llama : propagate the results of graph_compute (#9525)

* llama: propagating the results of `graph_compute` to the user interface

* llama: reverting kv_cache in case of failed compute

* llama: `llama_kv_cache_state` was removed, only the result of `llama_graph_compute` is returned

* llama: restore a kv_cache in case of failed computation

* llama: correct reverting of the entire batch.
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models

* llama: updated comments

* llama : add comments about KV cache state after error

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Michael Podvitskiy 2024-11-13 20:00:35 +02:00 committed by GitHub
parent 5ea926dad7
commit fb4a0ec083
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 109 additions and 15 deletions

View File

@ -797,7 +797,7 @@ extern "C" {
// Processes a batch of tokens with the ecoder part of the encoder-decoder model. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
// Stores the encoder output internally for later use by the decoder cross-attention layers. // Stores the encoder output internally for later use by the decoder cross-attention layers.
// 0 - success // 0 - success
// < 0 - error // < 0 - error. the KV cache state is restored to the state before this call
LLAMA_API int32_t llama_encode( LLAMA_API int32_t llama_encode(
struct llama_context * ctx, struct llama_context * ctx,
struct llama_batch batch); struct llama_batch batch);
@ -805,7 +805,7 @@ extern "C" {
// Positive return values does not mean a fatal error, but rather a warning. // Positive return values does not mean a fatal error, but rather a warning.
// 0 - success // 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
// < 0 - error // < 0 - error. the KV cache state is restored to the state before this call
LLAMA_API int32_t llama_decode( LLAMA_API int32_t llama_decode(
struct llama_context * ctx, struct llama_context * ctx,
struct llama_batch batch); struct llama_batch batch);

View File

@ -3502,11 +3502,24 @@ static bool llama_kv_cache_init(
return true; return true;
} }
// a structure holds information about the slot found in llama_kv_cache_find_slot
struct llama_kv_cache_slot_info {
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
bool found = false; // the slot was found
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
operator bool() const { return found; }
};
static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};
// find an empty slot of size "n_tokens" in the cache // find an empty slot of size "n_tokens" in the cache
// updates the cache head // updates the cache head
// returns a structure holding information about the slot found
// Note: On success, it's important that cache.head points // Note: On success, it's important that cache.head points
// to the first cell of the slot. // to the first cell of the slot.
static bool llama_kv_cache_find_slot( static struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache, struct llama_kv_cache & cache,
const struct llama_ubatch & batch) { const struct llama_ubatch & batch) {
const uint32_t n_tokens = batch.n_tokens; const uint32_t n_tokens = batch.n_tokens;
@ -3534,7 +3547,7 @@ static bool llama_kv_cache_find_slot(
// too big seq_id // too big seq_id
// TODO: would it be possible to resize the cache instead? // TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
return false; return llama_kv_cache_slot_info_failed;
} }
if (j > 0) { if (j > 0) {
llama_kv_cell & seq = cache.cells[seq_id]; llama_kv_cell & seq = cache.cells[seq_id];
@ -3669,15 +3682,17 @@ static bool llama_kv_cache_find_slot(
// allow getting the range of used cells, from head to head + n // allow getting the range of used cells, from head to head + n
cache.head = min; cache.head = min;
cache.n = max - min + 1; cache.n = max - min + 1;
cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
// sanity check // sanity check
return cache.n >= n_seqs; return llama_kv_cache_slot_info(cache.n >= n_seqs);
} }
// otherwise, one cell per token. // otherwise, one cell per token.
if (n_tokens > cache.size) { if (n_tokens > cache.size) {
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
return false; return llama_kv_cache_slot_info_failed;
} }
uint32_t n_tested = 0; uint32_t n_tested = 0;
@ -3705,7 +3720,7 @@ static bool llama_kv_cache_find_slot(
if (n_tested >= cache.size) { if (n_tested >= cache.size) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return false; return llama_kv_cache_slot_info_failed;
} }
} }
@ -3722,7 +3737,7 @@ static bool llama_kv_cache_find_slot(
cache.used += n_tokens; cache.used += n_tokens;
return true; return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
} }
// find how many cells are currently in use // find how many cells are currently in use
@ -3998,6 +4013,53 @@ static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams)
return cparams.flash_attn ? 256u : 32u; return cparams.flash_attn ? 256u : 32u;
} }
// saves the kv_cache state for future recovery.
// used to rollback llama_kv_cache_find_slot changes.
struct llama_kv_slot_restorer {
struct llama_kv_cache_state {
uint32_t head = 0;
uint32_t n = 0;
} old_state;
// for non-recurrent models only
// list of slots to restore
std::vector<std::pair<uint32_t, uint32_t>> slot_boundaries;
bool do_restore = false;
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
old_state.head = cache.head;
old_state.n = cache.n;
}
// saves a slot information for future restoration
void save(const struct llama_kv_cache_slot_info & slot) {
if (slot) {
do_restore = true;
if (slot.boundaries.first != slot.boundaries.second) {
slot_boundaries.push_back(slot.boundaries);
}
}
}
// must be explicitly called to restore the kv_cache state
// and rollback changes from all llama_kv_cache_find_slot calls
void restore(struct llama_kv_cache & cache) {
if (do_restore) {
cache.head = old_state.head;
cache.n = old_state.n;
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
llama_kv_cache_seq_rm(cache, -1, -1, -1);
} else {
for (auto & slot : slot_boundaries) {
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
}
}
}
}
};
// //
// model loading and saving // model loading and saving
// //
@ -17181,7 +17243,8 @@ static void llama_output_reorder(struct llama_context * ctx) {
} }
} }
static void llama_graph_compute( // returns the result of ggml_backend_sched_graph_compute_async execution
static enum ggml_status llama_graph_compute(
llama_context & lctx, llama_context & lctx,
ggml_cgraph * gf, ggml_cgraph * gf,
int n_threads, int n_threads,
@ -17196,15 +17259,20 @@ static void llama_graph_compute(
set_n_threads_fn.second(set_n_threads_fn.first, n_threads); set_n_threads_fn.second(set_n_threads_fn.first, n_threads);
} }
auto err = ggml_backend_sched_graph_compute_async(lctx.sched.get(), gf); auto status = ggml_backend_sched_graph_compute_async(lctx.sched.get(), gf);
if (err != GGML_STATUS_SUCCESS) { if (status != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, err); LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status);
} }
// fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
return status;
} }
// decode a batch of tokens by evaluating the transformer // decode a batch of tokens by evaluating the transformer
// in case of unsuccessful decoding (error or warning),
// the kv_cache state will be returned to its original state
// (for non-recurrent models) or cleaned (for recurrent models)
// //
// - lctx: llama context // - lctx: llama context
// - batch: batch to evaluate // - batch: batch to evaluate
@ -17254,6 +17322,7 @@ static int llama_decode_internal(
lctx.n_queued_tokens += n_tokens_all; lctx.n_queued_tokens += n_tokens_all;
auto & kv_self = lctx.kv_self; auto & kv_self = lctx.kv_self;
llama_kv_slot_restorer kv_slot_restorer(kv_self);
const int64_t n_embd = hparams.n_embd; const int64_t n_embd = hparams.n_embd;
const int64_t n_vocab = hparams.n_vocab; const int64_t n_vocab = hparams.n_vocab;
@ -17338,9 +17407,11 @@ static int llama_decode_internal(
kv_self.head = 0; kv_self.head = 0;
} }
if (!llama_kv_cache_find_slot(kv_self, ubatch)) { const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
if (!slot) {
return 1; return 1;
} }
kv_slot_restorer.save(slot);
if (!kv_self.recurrent) { if (!kv_self.recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized // a heuristic, to avoid attending the full cache if it is not yet utilized
@ -17387,7 +17458,19 @@ static int llama_decode_internal(
llama_set_inputs(lctx, ubatch); llama_set_inputs(lctx, ubatch);
llama_graph_compute(lctx, gf, n_threads, threadpool); const auto compute_status = llama_graph_compute(lctx, gf, n_threads, threadpool);
if (compute_status != GGML_STATUS_SUCCESS) {
kv_slot_restorer.restore(kv_self);
switch (compute_status) {
case GGML_STATUS_ABORTED:
return 2;
case GGML_STATUS_ALLOC_FAILED:
return -2;
case GGML_STATUS_FAILED:
default:
return -3;
}
}
// update the kv ring buffer // update the kv ring buffer
{ {
@ -17624,7 +17707,18 @@ static int llama_encode_internal(
llama_set_inputs(lctx, ubatch); llama_set_inputs(lctx, ubatch);
llama_graph_compute(lctx, gf, n_threads, threadpool); const auto compute_status = llama_graph_compute(lctx, gf, n_threads, threadpool);
switch (compute_status) {
case GGML_STATUS_SUCCESS:
break;
case GGML_STATUS_ABORTED:
return 2;
case GGML_STATUS_ALLOC_FAILED:
return -2;
case GGML_STATUS_FAILED:
default:
return -3;
}
// extract embeddings // extract embeddings
if (embd) { if (embd) {