mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 13:52:22 +01:00
convert-hf : support Mini-Jamba conversion
This commit is contained in:
parent
ea2e63e9d2
commit
fc59407efe
@ -2393,6 +2393,16 @@ class JambaModel(Model):
|
||||
|
||||
return "gpt-2"
|
||||
|
||||
def set_vocab(self):
|
||||
if (self.dir_model / "tokenizer.model").is_file():
|
||||
# Using Jamba's tokenizer.json causes errors on model load
|
||||
# (something about "byte not found in vocab"),
|
||||
# but there's a working tokenizer.model
|
||||
self._set_vocab_sentencepiece()
|
||||
else:
|
||||
# Some Jamba models only have a tokenizer.json, which works.
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
|
||||
d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
|
||||
@ -2412,7 +2422,7 @@ class JambaModel(Model):
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
|
||||
self.gguf_writer.add_embedding_length(d_model)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||
@ -2430,6 +2440,15 @@ class JambaModel(Model):
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
|
||||
# Mini-Jamba
|
||||
name = name.replace(".moe.", ".feed_forward.")
|
||||
if bid is not None:
|
||||
moe_offset = self.hparams["expert_layer_offset"]
|
||||
moe_period = self.hparams["expert_layer_period"]
|
||||
|
||||
if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
|
||||
name = name.replace(".experts.0.", ".")
|
||||
|
||||
# process the experts separately
|
||||
if ".feed_forward.experts." in name:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
|
@ -207,6 +207,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.ffn_norm", # internlm2
|
||||
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
|
||||
"model.layers.{bid}.pre_ff_layernorm", # jamba
|
||||
"model.layers.{bid}.pre_moe_layernorm", # mini-jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
@ -390,10 +391,12 @@ class TensorNameMap:
|
||||
|
||||
MODEL_TENSOR.SSM_B_NORM: (
|
||||
"model.layers.{bid}.mamba.b_layernorm", # jamba
|
||||
"model.layers.{bid}.mamba.B_layernorm", # mini-jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_C_NORM: (
|
||||
"model.layers.{bid}.mamba.c_layernorm", # jamba
|
||||
"model.layers.{bid}.mamba.C_layernorm", # mini-jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_D: (
|
||||
|
Loading…
x
Reference in New Issue
Block a user