metal : enable ggml-alloc (#2627)

* metal: enable ggml-alloc

Make ggml-alloc work with concurrently dispatch.

* style-fix

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Shouzheng Liu 2023-08-16 16:08:28 -04:00 committed by GitHub
parent bf83bff674
commit fc8ef549e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 61 additions and 26 deletions

View File

@ -67,6 +67,8 @@ struct ggml_allocr {
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size;
bool measure;
int parse_seq[GGML_MAX_NODES];
bool has_parse_seq;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
@ -229,6 +231,17 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t
alloc->n_free_blocks++;
}
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n) {
int pos = 0;
for (int i = 0; i < n; i++) {
if (list[i] != -1) {
alloc->parse_seq[pos] = list[i];
pos++;
}
}
alloc->has_parse_seq = true;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
@ -248,6 +261,8 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
/*.has_parse_seq = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
@ -275,6 +290,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ true,
/*.parse_seq = */ {0},
/*.has_parse_seq = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
@ -473,7 +490,13 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
allocate_node(alloc, input);
}
}
for (int i = 0; i < gf->n_nodes; i++) {
for (int ind = 0; ind < gf->n_nodes; ind++) {
int i;
if (alloc->has_parse_seq) {
i = alloc->parse_seq[ind];
} else {
i = ind;
}
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)

View File

@ -10,6 +10,10 @@ extern "C" {
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n);
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);

View File

@ -63,10 +63,13 @@ void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
// try to find operations that can be run concurrently in the graph
// you should run it again if the topology of your graph changes
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
// if the graph has been optimized for concurrently dispatch
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// output the concur_list for ggml_alloc
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel

View File

@ -236,11 +236,12 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = n_cb;
}
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
if (ctx->concur_list_len) {
return true;
int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
return ctx->concur_list_len;
}
return false;
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
return ctx->concur_list;
}
// finds the Metal buffer that contains the tensor data on the GPU device
@ -383,7 +384,7 @@ void ggml_metal_get_tensor(
void ggml_metal_graph_find_concurrency(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
struct ggml_cgraph * gf, bool check_mem) {
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
int nodes_unused[GGML_MAX_CONCUR];
@ -430,7 +431,7 @@ void ggml_metal_graph_find_concurrency(
}
}
}
if (exe_flag) {
if (exe_flag && check_mem) {
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
int64_t data_start = (int64_t) gf->nodes[i]->data;

View File

@ -63,7 +63,7 @@ static void llama_log_callback_default(llama_log_level level, const char * text,
#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
#if !defined(GGML_USE_CUBLAS)
#include "ggml-alloc.h"
#define LLAMA_USE_ALLOCATOR
#else
@ -1846,10 +1846,6 @@ static bool llama_eval_internal(
#ifdef GGML_USE_METAL
if (lctx.ctx_metal) {
// TODO: disabled until #2413 is resolved
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
//}
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, gf);
ggml_metal_get_tensor (lctx.ctx_metal, res);
@ -3287,7 +3283,18 @@ struct llama_context * llama_new_context_with_model(
int n_past = hparams.n_ctx - n_tokens;
llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
#endif
// measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
@ -3305,6 +3312,11 @@ struct llama_context * llama_new_context_with_model(
ctx->buf_alloc.resize(alloc_size);
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
#ifdef GGML_USE_METAL
if (ctx->ctx_metal) {
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
#endif
}
#else
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
@ -3319,13 +3331,6 @@ struct llama_context * llama_new_context_with_model(
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
// this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
void * data_ptr = NULL;
size_t data_size = 0;
@ -3354,8 +3359,7 @@ struct llama_context * llama_new_context_with_model(
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.addr, ctx->buf_alloc.size, 0));
#undef LLAMA_METAL_CHECK_BUF
}
#endif