diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index cb50e98c5..50afdd939 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -550,6 +550,8 @@ struct clip_ctx { ggml_backend_t backend = NULL; ggml_gallocr_t compute_alloc = NULL; + + struct clip_image_size * load_image_size; }; static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) { @@ -996,7 +998,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } // read and create ggml_context containing the tensors and their data -struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, struct clip_image_size * load_image_size) { +struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { struct ggml_context * meta = NULL; struct gguf_init_params params = { @@ -1456,7 +1458,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, s new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); clip_image_f32_batch batch; batch.size = 1; - ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, load_image_size, false); + ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false); ggml_gallocr_reserve(new_clip->compute_alloc, gf); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); @@ -1465,6 +1467,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, s return new_clip; } +void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size){ + ctx_clip->load_image_size = load_image_size; +} + struct clip_image_size * clip_image_size_init() { struct clip_image_size * load_image_size = new struct clip_image_size(); load_image_size->width = 448; @@ -2066,7 +2072,7 @@ static std::vector> get_2d_sincos_pos_embed(int embed_dim, co return pos_embed_2d; } -bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec, struct clip_image_size * load_image_size) { +bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; @@ -2075,10 +2081,10 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3 clip_image_f32_batch imgs{}; imgs.size = 1; imgs.data = img; - return clip_image_batch_encode(ctx, n_threads, &imgs, vec, load_image_size); + return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } -bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec, struct clip_image_size * load_image_size) { +bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; @@ -2093,7 +2099,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima } // build the inference graph - ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, load_image_size, true); + ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); ggml_gallocr_alloc_graph(ctx->compute_alloc, gf); // set inputs @@ -2156,12 +2162,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima // -> https://huggingface.co/Qwen/Qwen-VL/tree/main // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); - if(load_image_size==nullptr){ - load_image_size= clip_image_size_init(); + if(ctx->load_image_size==nullptr){ + ctx->load_image_size= clip_image_size_init(); } - LOG_TEE("%s : %d %d\n", __func__, load_image_size->width, load_image_size->height); - int pos_w = load_image_size->width/patch_size; - int pos_h = load_image_size->height/patch_size; + LOG_TEE("%s : %d %d\n", __func__, ctx->load_image_size->width, ctx->load_image_size->height); + int pos_w = ctx->load_image_size->width/patch_size; + int pos_h = ctx->load_image_size->height/patch_size; int embed_dim = 4096; auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); diff --git a/examples/llava/clip.h b/examples/llava/clip.h index f44e38ee1..860f114c4 100644 --- a/examples/llava/clip.h +++ b/examples/llava/clip.h @@ -40,7 +40,7 @@ struct clip_image_f32_batch { size_t size; }; -CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity, struct clip_image_size * load_image_size); +CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity); CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity); CLIP_API void clip_free(struct clip_ctx * ctx); @@ -59,6 +59,7 @@ CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx); CLIP_API int clip_n_patches (const struct clip_ctx * ctx); CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx); +CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size); CLIP_API struct clip_image_size * clip_image_size_init(); CLIP_API struct clip_image_u8 * clip_image_u8_init (); CLIP_API struct clip_image_f32 * clip_image_f32_init(); @@ -80,8 +81,8 @@ CLIP_API void uhd_normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_im CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx); -CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec, struct clip_image_size * load_image_size); -CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec, struct clip_image_size * load_image_size); +CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec); +CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec); CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype); diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 98e7b5c31..80c65a875 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -413,7 +413,7 @@ void llava_image_embed_free(struct llava_image_embed * embed) { free(embed); } -static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos, struct clip_image_size * load_image_size) { +static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { // std::vector img_res_v; // format VectN x H x W x RGB (N x 448 x 448 x 3) clip_image_f32 * img_res_v = clip_image_f32_init(); @@ -425,7 +425,7 @@ static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type); *n_img_pos = clip_n_patches(ctx_clip); - bool encoded = clip_image_encode(ctx_clip, n_threads, img_res_v, image_embd, load_image_size); // image_embd shape is 96 x 4096 + bool encoded = clip_image_encode(ctx_clip, n_threads, img_res_v, image_embd); // image_embd shape is 96 x 4096 if (!encoded) { LOG_TEE("Unable to encode image\n"); return false; @@ -690,7 +690,8 @@ struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * load_image_size->width = imgs[i][j]->nx; load_image_size->height = imgs[i][j]->ny; LOG_TEE("%s : %d %d\n", __func__, load_image_size->width, load_image_size->height); - bool image_embed_result = llava_image_embed_make_with_clip_img_uhd(ctx_clip, n_threads, only_v2_5_reshape_by_patch(imgs[i][j], patch_size), &image_embed, &n_image_pos, load_image_size); + clip_add_load_image_size(ctx_clip, load_image_size); + bool image_embed_result = llava_image_embed_make_with_clip_img_uhd(ctx_clip, n_threads, only_v2_5_reshape_by_patch(imgs[i][j], patch_size), &image_embed, &n_image_pos); if (!image_embed_result) { LOG_TEE("%s: coulnd't embed the image\n", __func__); return NULL; @@ -705,7 +706,7 @@ struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * return results; } -bool llava_image_embed_make_with_clip_img_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out, struct clip_image_size * load_image_size) { +bool llava_image_embed_make_with_clip_img_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model if (!image_embd) { LOG_TEE("Unable to allocate memory for image embeddings\n"); @@ -713,7 +714,7 @@ bool llava_image_embed_make_with_clip_img_uhd(clip_ctx * ctx_clip, int n_threads } int n_img_pos; - if (!encode_image_with_clip_uhd(ctx_clip, n_threads, img, image_embd, &n_img_pos, load_image_size)) { + if (!encode_image_with_clip_uhd(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { LOG_TEE("%s: cannot encode image, aborting\n", __func__); free(image_embd); return false; diff --git a/examples/llava/llava.h b/examples/llava/llava.h index 4e124a142..b78b7f010 100644 --- a/examples/llava/llava.h +++ b/examples/llava/llava.h @@ -45,7 +45,7 @@ LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed); /** build an image embed from image file bytes */ LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img); /** build an image embed from a path to an image filename */ -LLAVA_API bool llava_image_embed_make_with_clip_img_uhd(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out, struct clip_image_size * load_image_size); +LLAVA_API bool llava_image_embed_make_with_clip_img_uhd(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out); LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path); LLAVA_API void llava_image_embed_free_uhd(struct uhd_image_embed * embed);