convert.py : support bpe tokenizer (#2228)

* support bpe tokenizer in convert

Signed-off-by: ldwang <ftgreat@gmail.com>

* support bpe tokenizer in convert

Signed-off-by: ldwang <ftgreat@gmail.com>

* support bpe tokenizer in convert, fix

Signed-off-by: ldwang <ftgreat@gmail.com>

---------

Signed-off-by: ldwang <ftgreat@gmail.com>
Co-authored-by: ldwang <ftgreat@gmail.com>
This commit is contained in:
ldwang 2023-07-25 21:22:09 +08:00 committed by GitHub
parent 875086bdb9
commit fce48caf9a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -234,13 +234,20 @@ class Params:
class SentencePieceVocab: class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None:
self.vocabtype = vocabtype
if self.vocabtype == "bpe":
self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
else:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: Dict[str, int] added_tokens: Dict[str, int]
if fname_added_tokens is not None: if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens)) added_tokens = json.load(open(fname_added_tokens))
else: else:
added_tokens = {} added_tokens = {}
if self.vocabtype == "bpe":
vocab_size: int = len(self.sentencepiece_tokenizer)
else:
vocab_size: int = self.sentencepiece_tokenizer.vocab_size() vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values()) actual_ids = sorted(added_tokens.values())
@ -255,6 +262,16 @@ class SentencePieceVocab:
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
tokenizer = self.sentencepiece_tokenizer tokenizer = self.sentencepiece_tokenizer
if self.vocabtype == "bpe":
from transformers.models.gpt2 import tokenization_gpt2
byte_encoder = tokenization_gpt2.bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i, item in enumerate(tokenizer):
text: bytes
text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]])
score: float = -i
yield text, score
else:
for i in range(tokenizer.vocab_size()): for i in range(tokenizer.vocab_size()):
text: bytes text: bytes
if tokenizer.is_unknown(i): if tokenizer.is_unknown(i):
@ -1196,14 +1213,18 @@ def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
return {name: model[name] for name in TENSORS_LIST if name in model} return {name: model[name] for name in TENSORS_LIST if name in model}
def load_vocab(path: Path) -> SentencePieceVocab: def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
print(f"vocabtype: {vocabtype}")
# Be extra-friendly and accept either a file or a directory. Also, if it's # Be extra-friendly and accept either a file or a directory. Also, if it's
# a directory, it might be the model directory, and tokenizer.model might # a directory, it might be the model directory, and tokenizer.model might
# be in the parent of that. # be in the parent of that.
if path.is_dir(): if path.is_dir():
path2 = path / "tokenizer.model" vocab_file = "tokenizer.model"
if vocabtype == 'bpe':
vocab_file = "vocab.json"
path2 = path / vocab_file
# Use `.parent` instead of /.. to handle the symlink case better. # Use `.parent` instead of /.. to handle the symlink case better.
path3 = path.parent / "tokenizer.model" path3 = path.parent / vocab_file
if path2.exists(): if path2.exists():
path = path2 path = path2
elif path3.exists(): elif path3.exists():
@ -1214,7 +1235,8 @@ def load_vocab(path: Path) -> SentencePieceVocab:
"if it's in another directory, pass the directory as --vocab-dir") "if it's in another directory, pass the directory as --vocab-dir")
added_tokens_path = path.parent / "added_tokens.json" added_tokens_path = path.parent / "added_tokens.json"
print(f"Loading vocab file {path}") print(f"Loading vocab file {path}")
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
vocabtype)
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path: def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
@ -1252,6 +1274,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, parser.add_argument("model", type=Path,
help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)")
args = parser.parse_args(args_in) args = parser.parse_args(args_in)
vocab: Vocab vocab: Vocab
@ -1259,7 +1282,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
model_plus = lazy_load_file(args.model) model_plus = lazy_load_file(args.model)
do_dump_model(model_plus) do_dump_model(model_plus)
elif args.vocab_only: elif args.vocab_only:
vocab = load_vocab(args.vocab_dir or args.model) vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
assert args.outfile, "need --outfile if using --vocab-only" assert args.outfile, "need --outfile if using --vocab-only"
outfile = args.outfile outfile = args.outfile
OutputFile.write_vocab_only(outfile, vocab) OutputFile.write_vocab_only(outfile, vocab)
@ -1273,7 +1296,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
vocab = model_plus.vocab vocab = model_plus.vocab
else: else:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir) vocab = load_vocab(vocab_dir, args.vocabtype)
params = Params.load(model_plus) params = Params.load(model_plus)
model = model_plus.model model = model_plus.model
model = do_necessary_conversions(model, params) model = do_necessary_conversions(model, params)