CUDA: non-contiguous (RMS) norm support (#11659)

* CUDA: non-contiguous (RMS) norm support

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Johannes Gäßler 2025-02-04 22:21:42 +01:00 committed by GitHub
parent 3ec9fd4b77
commit fd08255d0d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 97 additions and 47 deletions

View File

@ -38,6 +38,7 @@
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/wkv6.cuh"
#include "ggml-cuda/gla.cuh"
#include "ggml.h"
#include <algorithm>
#include <array>
@ -3139,6 +3140,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_RMS_NORM_BACK:
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
break;
@ -3181,7 +3183,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
return true;
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARANGE:

View File

@ -1,12 +1,20 @@
#include "norm.cuh"
#include <cstdint>
template <int block_size>
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
static __global__ void norm_f32(
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps) {
const int nrows = gridDim.x;
const int nchannels = gridDim.y;
const int row = blockIdx.x;
const int channel = blockIdx.y;
const int sample = blockIdx.z;
const int tid = threadIdx.x;
x += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
x += sample*stride_sample + channel*stride_channel + row*stride_row;
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
float2 mean_var = make_float2(0.0f, 0.0f);
@ -97,12 +105,19 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
}
template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
static __global__ void rms_norm_f32(
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps) {
const int nrows = gridDim.x;
const int nchannels = gridDim.y;
const int row = blockIdx.x;
const int channel = blockIdx.y;
const int sample = blockIdx.z;
const int tid = threadIdx.x;
x += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
x += sample*stride_sample + channel*stride_channel + row*stride_row;
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
float tmp = 0.0f; // partial sum for thread in warp
@ -186,13 +201,16 @@ static __global__ void rms_norm_back_f32(
}
}
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
static void norm_f32_cuda(
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
} else {
const dim3 block_dims(1024, 1, 1);
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
}
}
@ -207,13 +225,16 @@ static void group_norm_f32_cuda(
}
}
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
static void rms_norm_f32_cuda(
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
rms_norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
rms_norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
}
}
@ -233,19 +254,22 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
}
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@ -254,8 +278,6 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@ -275,19 +297,22 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
rms_norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
}
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@ -1206,10 +1206,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction;
case GGML_OP_RMS_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0);
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
case GGML_OP_ARGMAX:
case GGML_OP_NORM:
return true;
case GGML_OP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];

View File

@ -8182,9 +8182,11 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL:

View File

@ -4610,7 +4610,8 @@ struct llm_build_context {
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
// TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
kv_compressed = ggml_cont(ctx0, kv_compressed);
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, cb, il);
@ -6464,7 +6465,8 @@ struct llm_build_context {
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
// TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
kv_compressed = ggml_cont(ctx0, kv_compressed);
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, cb, il);

View File

@ -1674,21 +1674,28 @@ struct test_silu_back : public test_case {
struct test_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
const bool v; // whether a is a non-contiguous view
const float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
return VARS_TO_STR4(type, ne, v, eps);
}
test_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
bool v = false,
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
: type(type), ne(ne), v(v), eps(eps) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");
if (v) {
a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view of a");
}
ggml_tensor * out = ggml_norm(ctx, a, eps);
ggml_set_name(out, "out");
@ -1700,22 +1707,29 @@ struct test_norm : public test_case {
struct test_rms_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
const bool v; // whether a is a non-contiguous view
const float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
return VARS_TO_STR4(type, ne, v, eps);
}
test_rms_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
bool v = false,
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
: type(type), ne(ne), v(v), eps(eps) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");
if (v) {
a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view of a");
}
ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
ggml_set_name(out, "out");
@ -1741,7 +1755,7 @@ struct test_rms_norm : public test_case {
struct test_rms_norm_back : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
const float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
@ -2919,7 +2933,7 @@ struct test_group_norm : public test_case {
const float eps;
std::string vars() override {
return VARS_TO_STR3(type, ne, num_groups);
return VARS_TO_STR4(type, ne, num_groups, eps);
}
test_group_norm(ggml_type type = GGML_TYPE_F32,
@ -3964,9 +3978,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_scale());
test_cases.emplace_back(new test_silu_back());
for (float eps : {0.0f, 1e-7f, 1e-4f, 1e-1f}) {
test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
test_cases.emplace_back(new test_rms_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
for (bool v : {false, true}) {
test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
}
test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}