mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
server: tests: add truncated prompt tests, better kv cache size (#5933)
* server: tests: add truncated prompt tests, better size * server, tests : update regex --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
c2101a2e90
commit
fd72d2d2a5
@ -1128,6 +1128,7 @@ struct server_context {
|
||||
|
||||
LOG_VERBOSE("stopped by limit", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_decoded", slot.n_decoded},
|
||||
{"n_predict", slot.params.n_predict},
|
||||
});
|
||||
@ -1141,6 +1142,8 @@ struct server_context {
|
||||
}
|
||||
|
||||
LOG_VERBOSE("next token", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"token", result.tok},
|
||||
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
|
||||
{"has_next_token", slot.has_next_token},
|
||||
@ -1750,6 +1753,15 @@ struct server_context {
|
||||
slot.n_past = 0;
|
||||
slot.n_prompt_tokens = prompt_tokens.size();
|
||||
|
||||
LOG_VERBOSE("prompt tokenized", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_prompt_tokens", slot.n_prompt_tokens},
|
||||
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
||||
});
|
||||
|
||||
if (slot.embedding) {
|
||||
// this prompt is too large to process - discard it
|
||||
if (slot.n_prompt_tokens > n_batch) {
|
||||
@ -1788,10 +1800,13 @@ struct server_context {
|
||||
slot.n_prompt_tokens = prompt_tokens.size();
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_prompt_tokens", slot.n_prompt_tokens},
|
||||
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
||||
});
|
||||
|
||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||
|
@ -6,8 +6,8 @@ Feature: Parallel
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And 42 as server seed
|
||||
And 512 as batch size
|
||||
And 64 KV cache size
|
||||
And 128 as batch size
|
||||
And 256 KV cache size
|
||||
And 2 slots
|
||||
And continuous batching
|
||||
Then the server is starting
|
||||
@ -76,6 +76,7 @@ Feature: Parallel
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
||||
Given a prompt:
|
||||
"""
|
||||
|
@ -10,11 +10,10 @@ Feature: llama.cpp server
|
||||
# KV Cache corresponds to the total amount of tokens
|
||||
# that can be stored across all independent sequences: #4130
|
||||
# see --ctx-size and #5568
|
||||
And 32 KV cache size
|
||||
And 512 as batch size
|
||||
And 1 slots
|
||||
And embeddings extraction
|
||||
And 32 server max tokens to predict
|
||||
And 256 KV cache size
|
||||
And 32 as batch size
|
||||
And 2 slots
|
||||
And 64 server max tokens to predict
|
||||
And prometheus compatible metrics exposed
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
@ -23,18 +22,35 @@ Feature: llama.cpp server
|
||||
Then the server is ready
|
||||
And all slots are idle
|
||||
|
||||
|
||||
Scenario Outline: Completion
|
||||
Given a prompt <prompt>
|
||||
And <n_predict> max tokens to predict
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
And the completion is <truncated> truncated
|
||||
And <n_prompt> prompt tokens are processed
|
||||
And prometheus metrics are exposed
|
||||
And metric llamacpp:tokens_predicted is <n_predicted>
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 8 |
|
||||
| Write a joke about AI | 64 | (park\|friends\|scared\|always)+ | 32 |
|
||||
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
|
||||
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids)+ | 46 | 64 | not |
|
||||
|
||||
Scenario: Completion prompt truncated
|
||||
Given a prompt:
|
||||
"""
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
||||
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns
|
||||
And the completion is truncated
|
||||
And 109 prompt tokens are processed
|
||||
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a model <model>
|
||||
@ -44,11 +60,14 @@ Feature: llama.cpp server
|
||||
And streaming is <enable_streaming>
|
||||
Given an OAI compatible chat completions request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
And <n_prompt> prompt tokens are processed
|
||||
And the completion is <truncated> truncated
|
||||
|
||||
Examples: Prompts
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
|
||||
| llama-2 | Book | What is the best book | 8 | (Mom\|what)+ | 8 | disabled |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks\|happy\|bird)+ | 32 | enabled |
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
||||
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird)+ | -1 | 64 | enabled | |
|
||||
|
||||
|
||||
Scenario: Tokenize / Detokenize
|
||||
When tokenizing:
|
||||
|
@ -196,12 +196,30 @@ async def step_request_completion(context, api_error):
|
||||
|
||||
@step(u'{predicted_n:d} tokens are predicted matching {re_content}')
|
||||
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n, re_content)
|
||||
context.completion = context.tasks_result.pop()
|
||||
assert_n_tokens_predicted(context.completion, predicted_n, re_content)
|
||||
|
||||
|
||||
@step(u'{predicted_n:d} tokens are predicted')
|
||||
def step_n_tokens_predicted(context, predicted_n):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n)
|
||||
context.completion = context.tasks_result.pop()
|
||||
assert_n_tokens_predicted(context.completion, predicted_n)
|
||||
|
||||
|
||||
@step(u'the completion is truncated')
|
||||
def step_assert_completion_truncated(context):
|
||||
step_assert_completion_truncated(context, '')
|
||||
|
||||
|
||||
@step(u'the completion is {truncated} truncated')
|
||||
def step_assert_completion_truncated(context, truncated):
|
||||
truncated = truncated != "not"
|
||||
assert context.completion['truncated'] == truncated, f'{context.completion}'
|
||||
|
||||
|
||||
@step(u'{n_prompt:d} prompt tokens are processed')
|
||||
def step_impl(context, n_prompt):
|
||||
assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
|
||||
|
||||
|
||||
@step(u'a user prompt {user_prompt}')
|
||||
@ -722,7 +740,8 @@ async def oai_chat_completions(user_prompt,
|
||||
completion_response = {
|
||||
'content': '',
|
||||
'timings': {
|
||||
'predicted_n': 0
|
||||
'predicted_n': 0,
|
||||
'prompt_n': 0
|
||||
}
|
||||
}
|
||||
if async_client:
|
||||
@ -763,7 +782,8 @@ async def oai_chat_completions(user_prompt,
|
||||
completion_response = {
|
||||
'content': chat_completion_raw['choices'][0]['message'],
|
||||
'timings': {
|
||||
'predicted_n': chat_completion_raw['usage']['completion_tokens']
|
||||
'predicted_n': chat_completion_raw['usage']['completion_tokens'],
|
||||
'prompt_n': chat_completion_raw['usage']['prompt_tokens']
|
||||
}
|
||||
}
|
||||
else:
|
||||
@ -792,13 +812,16 @@ async def oai_chat_completions(user_prompt,
|
||||
if 'content' in delta:
|
||||
completion_response['content'] += delta['content']
|
||||
completion_response['timings']['predicted_n'] += 1
|
||||
completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
|
||||
else:
|
||||
assert len(chat_completion.choices) == 1
|
||||
completion_response = {
|
||||
'content': chat_completion.choices[0].message.content,
|
||||
'timings': {
|
||||
'predicted_n': chat_completion.usage.completion_tokens
|
||||
}
|
||||
'predicted_n': chat_completion.usage.completion_tokens,
|
||||
'prompt_n': chat_completion.usage.prompt_tokens
|
||||
},
|
||||
'truncated': chat_completion.choices[0].finish_reason != 'stop'
|
||||
}
|
||||
if debug:
|
||||
print("OAI response formatted to llama.cpp:", completion_response)
|
||||
|
Loading…
Reference in New Issue
Block a user