mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
starcoder : add GPU offloading (#3827)
* starcoder : do not GPU split 1D bias tensors * starcoder : offload layers to GPU ggml-ci
This commit is contained in:
parent
41aee4df82
commit
fdee152e4e
106
llama.cpp
106
llama.cpp
@ -2695,8 +2695,8 @@ static void llm_load_tensors(
|
|||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_STARCODER:
|
case LLM_ARCH_STARCODER:
|
||||||
{
|
{
|
||||||
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||||
model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
|
model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
|
||||||
|
|
||||||
// output
|
// output
|
||||||
{
|
{
|
||||||
@ -2747,19 +2747,19 @@ static void llm_load_tensors(
|
|||||||
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
|
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
|
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
|
||||||
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
|
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
|
||||||
|
|
||||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
|
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||||
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
|
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
|
||||||
layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
|
layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
|
||||||
|
|
||||||
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
|
layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
|
||||||
|
|
||||||
if (backend == GGML_BACKEND_GPU) {
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
vram_weights +=
|
vram_weights +=
|
||||||
@ -4616,6 +4616,8 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
|
|
||||||
const float norm_eps = hparams.f_norm_eps;
|
const float norm_eps = hparams.f_norm_eps;
|
||||||
|
|
||||||
|
const int n_gpu_layers = model.n_gpu_layers;
|
||||||
|
|
||||||
const int32_t n_tokens = batch.n_tokens;
|
const int32_t n_tokens = batch.n_tokens;
|
||||||
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
|
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
|
||||||
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
||||||
@ -4660,6 +4662,27 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||||
|
(void) i_gpu_start;
|
||||||
|
|
||||||
|
// offload functions set the tensor output backend to GPU
|
||||||
|
// tensors are GPU-accelerated if any input or the output has been offloaded
|
||||||
|
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
|
||||||
|
offload_func_t offload_func_kq = llama_nop;
|
||||||
|
offload_func_t offload_func_v = llama_nop;
|
||||||
|
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
if (n_gpu_layers > n_layer) {
|
||||||
|
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
if (n_gpu_layers > n_layer + 1) {
|
||||||
|
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
if (n_gpu_layers > n_layer + 2) {
|
||||||
|
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
{
|
{
|
||||||
// Compute position embeddings.
|
// Compute position embeddings.
|
||||||
struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||||
@ -4685,6 +4708,7 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||||
ggml_set_name(KQ_mask, "KQ_mask");
|
ggml_set_name(KQ_mask, "KQ_mask");
|
||||||
|
offload_func_kq(KQ_mask);
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
float * data = (float *) KQ_mask->data;
|
float * data = (float *) KQ_mask->data;
|
||||||
@ -4708,44 +4732,67 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
ggml_set_name(inpL, "inpL");
|
ggml_set_name(inpL, "inpL");
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
offload_func_t offload_func = llama_nop;
|
||||||
|
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
|
if (il >= i_gpu_start) {
|
||||||
|
offload_func = ggml_cuda_assign_buffers_no_alloc;
|
||||||
|
}
|
||||||
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
{
|
{
|
||||||
// Norm
|
// Norm
|
||||||
cur = ggml_norm(ctx0, inpL, norm_eps);
|
cur = ggml_norm(ctx0, inpL, norm_eps);
|
||||||
|
offload_func(cur);
|
||||||
|
|
||||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
|
||||||
|
offload_func(cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
// Self Attention
|
// Self Attention
|
||||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
|
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||||
|
offload_func_kq(cur);
|
||||||
|
|
||||||
struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
|
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||||
struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
|
offload_func_kq(cur);
|
||||||
struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
|
|
||||||
|
|
||||||
struct ggml_tensor * Qcur = tmpq;
|
struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||||
|
struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||||
|
struct ggml_tensor * tmpv = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||||
|
|
||||||
|
ggml_set_name(tmpq, "tmpq");
|
||||||
|
ggml_set_name(tmpk, "tmpk");
|
||||||
|
ggml_set_name(tmpv, "tmpv");
|
||||||
|
|
||||||
|
offload_func_kq(tmpq);
|
||||||
|
offload_func_kq(tmpk);
|
||||||
|
offload_func_v (tmpv);
|
||||||
|
|
||||||
|
struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
|
||||||
struct ggml_tensor * Kcur = tmpk;
|
struct ggml_tensor * Kcur = tmpk;
|
||||||
|
|
||||||
{
|
{
|
||||||
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
|
struct ggml_tensor * Vcur = ggml_transpose(ctx0, tmpv);
|
||||||
|
offload_func_v(Vcur);
|
||||||
ggml_set_name(Vcur, "Vcur");
|
ggml_set_name(Vcur, "Vcur");
|
||||||
|
|
||||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||||
|
offload_func_kq(k);
|
||||||
ggml_set_name(k, "k");
|
ggml_set_name(k, "k");
|
||||||
|
|
||||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||||
( n_ctx)*ggml_element_size(kv_self.v),
|
( n_ctx)*ggml_element_size(kv_self.v),
|
||||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||||
|
offload_func_v(v);
|
||||||
|
ggml_set_name(v, "v");
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * Q =
|
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||||
ggml_permute(ctx0,
|
offload_func_kq(Q);
|
||||||
ggml_cpy(ctx0,
|
|
||||||
Qcur,
|
|
||||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
|
|
||||||
0, 2, 1, 3);
|
|
||||||
ggml_set_name(Q, "Q");
|
ggml_set_name(Q, "Q");
|
||||||
|
|
||||||
struct ggml_tensor * K =
|
struct ggml_tensor * K =
|
||||||
@ -4754,23 +4801,28 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
ggml_element_size(kv_self.k)*n_embd_head,
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
||||||
|
offload_func_kq(K);
|
||||||
ggml_set_name(K, "K");
|
ggml_set_name(K, "K");
|
||||||
|
|
||||||
// K * Q
|
// K * Q
|
||||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||||
|
offload_func_kq(KQ);
|
||||||
ggml_set_name(KQ, "KQ");
|
ggml_set_name(KQ, "KQ");
|
||||||
|
|
||||||
// KQ_scaled = KQ / sqrt(n_embd_head)
|
// KQ_scaled = KQ / sqrt(n_embd_head)
|
||||||
// KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
|
// KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
|
||||||
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
||||||
|
offload_func_kq(KQ_scaled);
|
||||||
ggml_set_name(KQ_scaled, "KQ_scaled");
|
ggml_set_name(KQ_scaled, "KQ_scaled");
|
||||||
|
|
||||||
// KQ_masked = mask_past(KQ_scaled)
|
// KQ_masked = mask_past(KQ_scaled)
|
||||||
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
|
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
|
||||||
|
offload_func_kq(KQ_masked);
|
||||||
ggml_set_name(KQ_masked, "KQ_masked");
|
ggml_set_name(KQ_masked, "KQ_masked");
|
||||||
|
|
||||||
// KQ = soft_max(KQ_masked)
|
// KQ = soft_max(KQ_masked)
|
||||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
||||||
|
offload_func_v(KQ_soft_max);
|
||||||
ggml_set_name(KQ_soft_max, "KQ_soft_max");
|
ggml_set_name(KQ_soft_max, "KQ_soft_max");
|
||||||
|
|
||||||
// split cached V into n_head heads
|
// split cached V into n_head heads
|
||||||
@ -4783,22 +4835,25 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
ggml_set_name(V, "V");
|
ggml_set_name(V, "V");
|
||||||
|
|
||||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||||
|
offload_func_v(KQV);
|
||||||
ggml_set_name(KQV, "KQV");
|
ggml_set_name(KQV, "KQV");
|
||||||
|
|
||||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
|
||||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||||
|
offload_func_v(KQV_merged);
|
||||||
ggml_set_name(KQV_merged, "KQV_merged");
|
ggml_set_name(KQV_merged, "KQV_merged");
|
||||||
|
|
||||||
// cur = KQV_merged.contiguous().view(n_embd, n_tokens)
|
|
||||||
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
|
cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
|
||||||
|
offload_func_v(cur);
|
||||||
ggml_set_name(cur, "KQV_merged_contiguous");
|
ggml_set_name(cur, "KQV_merged_contiguous");
|
||||||
}
|
}
|
||||||
|
|
||||||
// Projection
|
// Projection
|
||||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
|
||||||
|
offload_func(cur);
|
||||||
|
|
||||||
// Add the input
|
// Add the input
|
||||||
cur = ggml_add(ctx0, cur, inpL);
|
cur = ggml_add(ctx0, cur, inpL);
|
||||||
|
offload_func(cur);
|
||||||
|
|
||||||
struct ggml_tensor * inpFF = cur;
|
struct ggml_tensor * inpFF = cur;
|
||||||
|
|
||||||
@ -4807,27 +4862,36 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
// Norm
|
// Norm
|
||||||
{
|
{
|
||||||
cur = ggml_norm(ctx0, inpFF, norm_eps);
|
cur = ggml_norm(ctx0, inpFF, norm_eps);
|
||||||
|
offload_func_nr(cur);
|
||||||
|
|
||||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
|
||||||
|
offload_func_nr(cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
|
||||||
|
offload_func(cur);
|
||||||
|
|
||||||
// GELU activation
|
// GELU activation
|
||||||
cur = ggml_gelu(ctx0, cur);
|
cur = ggml_gelu(ctx0, cur);
|
||||||
|
offload_func(cur);
|
||||||
|
|
||||||
// Projection
|
// Projection
|
||||||
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
|
||||||
|
offload_func(cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
inpL = ggml_add(ctx0, cur, inpFF);
|
inpL = ggml_add(ctx0, cur, inpFF);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Output Norm
|
// Output Norm
|
||||||
{
|
{
|
||||||
cur = ggml_norm(ctx0, inpL, norm_eps);
|
cur = ggml_norm(ctx0, inpL, norm_eps);
|
||||||
|
offload_func_nr(cur);
|
||||||
|
|
||||||
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
|
||||||
|
ggml_set_name(cur, "result_norm");
|
||||||
}
|
}
|
||||||
ggml_set_name(cur, "result_norm");
|
|
||||||
|
|
||||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
ggml_set_name(cur, "result_output");
|
ggml_set_name(cur, "result_output");
|
||||||
|
Loading…
x
Reference in New Issue
Block a user