mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-28 04:47:04 +01:00
llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL
* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors The implementation already supported it, and this makes Mamba's conv step slightly faster.
This commit is contained in:
parent
17f6c1ef3b
commit
fee3c1d740
5
ggml.c
5
ggml.c
@ -10992,11 +10992,6 @@ static void ggml_compute_forward_concat_f32(
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
// TODO: support for transposed / permuted tensors
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
GGML_ASSERT(dim >= 0 && dim < 4);
|
||||
|
20
llama.cpp
20
llama.cpp
@ -8713,7 +8713,7 @@ static struct ggml_tensor * llm_build_mamba(
|
||||
// conv
|
||||
{
|
||||
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
|
||||
struct ggml_tensor * conv_x = ggml_concat(ctx, conv, ggml_cont(ctx, ggml_transpose(ctx, x)), 0);
|
||||
struct ggml_tensor * conv_x = ggml_concat(ctx, conv, ggml_transpose(ctx, x), 0);
|
||||
|
||||
// copy last (d_conv - 1) columns back into the state cache
|
||||
struct ggml_tensor * last_conv = ggml_view_3d(ctx, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
|
||||
@ -8734,6 +8734,8 @@ static struct ggml_tensor * llm_build_mamba(
|
||||
// and then you're left with the resulting x tensor.
|
||||
// For simultaneous sequences, all sequences need to have the same length.
|
||||
|
||||
// TODO: remove unused implementations
|
||||
#if 0
|
||||
// For some reason, im2col expects a F16 kernel, but doesn't even read from it.
|
||||
// TODO: make im2col accept F32 kernels to directly pass ssm_conv1d to it.
|
||||
// => { d_conv * d_inner, n_seq_tokens, n_seqs}
|
||||
@ -8741,14 +8743,24 @@ static struct ggml_tensor * llm_build_mamba(
|
||||
ggml_new_tensor_2d(ctx, GGML_TYPE_F16, d_conv, d_inner),
|
||||
conv_x, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F32);
|
||||
|
||||
#if 0
|
||||
// TODO: CUDA, SYCL, and Vulkan don't (yet) support broadcasting the ne[3] dimension on MUL_MAT
|
||||
x = ggml_reshape_4d(ctx, x, d_conv, 1, d_inner, n_seq_tokens * n_seqs);
|
||||
|
||||
// => {1, 1, d_inner, n_seq_tokens * n_seqs}
|
||||
x = ggml_mul_mat(ctx, ggml_reshape_3d(ctx, model.layers[il].ssm_conv1d, d_conv, 1, d_inner), x);
|
||||
x = ggml_reshape_3d(ctx, x, d_inner, n_seq_tokens, n_seqs);
|
||||
#else
|
||||
x = ggml_reshape_4d(ctx, x, d_conv, d_inner, n_seq_tokens, n_seqs);
|
||||
|
||||
// Alternatively, this does the same as the above
|
||||
// x = ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);
|
||||
// NOTE: it seems this is very slighly more performant than MUL_MAT on CPU for small row sizes
|
||||
// => {1, d_inner, n_seq_tokens, n_seqs}
|
||||
x = ggml_sum_rows(ctx, ggml_mul(ctx, x, model.layers[il].ssm_conv1d));
|
||||
#endif
|
||||
x = ggml_reshape_3d(ctx, x, d_inner, n_seq_tokens, n_seqs);
|
||||
#else
|
||||
// Alternatively, this does the same as the above, but faster
|
||||
x = ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);
|
||||
#endif
|
||||
|
||||
// bias
|
||||
x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);
|
||||
|
Loading…
Reference in New Issue
Block a user