sampling : support for llguidance grammars (#10224)

* initial porting of previous LLG patch

* update for new APIs

* build: integrate llguidance as an external project

* use '%llguidance' as marker to enable llg lark syntax

* add some docs

* clarify docs

* code style fixes

* remove llguidance.h from .gitignore

* fix tests when llg is enabled

* pass vocab not model to llama_sampler_init_llg()

* copy test-grammar-integration.cpp to test-llguidance.cpp

* clang fmt

* fix ref-count bug

* build and run test

* gbnf -> lark syntax

* conditionally include llguidance test based on LLAMA_LLGUIDANCE flag

* rename llguidance test file to test-grammar-llguidance.cpp

* add gh action for llg test

* align tests with LLG grammar syntax and JSON Schema spec

* llama_tokenizer() in fact requires valid utf8

* update llg

* format file

* add $LLGUIDANCE_LOG_LEVEL support

* fix whitespace

* fix warning

* include <cmath> for INFINITY

* add final newline

* fail llama_sampler_init_llg() at runtime

* Link gbnf_to_lark.py script; fix links; refer to llg docs for lexemes

* simplify #includes

* improve doc string for LLAMA_LLGUIDANCE

* typo in merge

* bump llguidance to 0.6.12
This commit is contained in:
Michał Moskal 2025-02-01 23:55:32 -08:00 committed by GitHub
parent 0cec062a63
commit ff227703d6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 1555 additions and 9 deletions

View File

@ -302,6 +302,36 @@ jobs:
cd build cd build
ctest -L main --verbose --timeout 900 ctest -L main --verbose --timeout 900
ubuntu-latest-llguidance:
runs-on: ubuntu-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_LLGUIDANCE=ON
cmake --build . --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-latest-cmake-rpc: ubuntu-latest-cmake-rpc:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View File

@ -80,6 +80,7 @@ option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
# 3rd party libs # 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF) option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package # Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake) include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)

View File

@ -65,6 +65,7 @@ add_library(${TARGET} STATIC
console.h console.h
json-schema-to-grammar.cpp json-schema-to-grammar.cpp
json.hpp json.hpp
llguidance.cpp
log.cpp log.cpp
log.h log.h
minja.hpp minja.hpp
@ -91,6 +92,33 @@ if (LLAMA_CURL)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY}) set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif () endif ()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.6.12:
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/libllguidance.a ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""
)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
add_library(llguidance STATIC IMPORTED)
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/libllguidance.a)
add_dependencies(llguidance llguidance_ext)
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance)
endif ()
target_include_directories(${TARGET} PUBLIC .) target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_17) target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads) target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

View File

@ -991,7 +991,14 @@ public:
} }
}; };
std::string json_schema_to_grammar(const json & schema) { std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
return "%llguidance {}\nstart: %json " + schema.dump();
}
#else
(void)force_gbnf;
#endif // LLAMA_USE_LLGUIDANCE
return build_grammar([&](const common_grammar_builder & callbacks) { return build_grammar([&](const common_grammar_builder & callbacks) {
auto copy = schema; auto copy = schema;
callbacks.resolve_refs(copy); callbacks.resolve_refs(copy);

View File

@ -5,7 +5,8 @@
#define JSON_ASSERT GGML_ASSERT #define JSON_ASSERT GGML_ASSERT
#include "json.hpp" #include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema); std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
struct common_grammar_builder { struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule; std::function<std::string(const std::string &, const std::string &)> add_rule;

270
common/llguidance.cpp Normal file
View File

@ -0,0 +1,270 @@
#include "sampling.h"
#include "log.h"
#ifdef LLAMA_USE_LLGUIDANCE
# include "llguidance.h"
# include <cmath>
struct llama_sampler_llg {
const llama_vocab * vocab;
std::string grammar_kind;
std::string grammar_data;
LlgTokenizer * tokenizer;
LlgConstraint * grammar;
LlgMaskResult llg_res;
bool has_llg_res;
};
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
LlgConstraintInit cinit;
llg_constraint_init_set_defaults(&cinit, tokenizer);
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
if (log_level && *log_level) {
cinit.log_stderr_level = atoi(log_level);
}
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data);
if (llg_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_get_error(c));
llg_free_constraint(c);
return nullptr;
}
return c;
}
static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
return "llguidance";
}
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
LlgCommitResult res;
llg_commit_token(ctx->grammar, token, &res);
ctx->has_llg_res = false;
}
}
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
if (!ctx->has_llg_res) {
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) {
ctx->has_llg_res = true;
} else {
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar));
llg_free_constraint(ctx->grammar);
ctx->grammar = nullptr;
}
}
if (ctx->has_llg_res) {
if (ctx->llg_res.is_stop) {
for (size_t i = 0; i < cur_p->size; ++i) {
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) {
cur_p->data[i].logit = -INFINITY;
}
}
} else {
const uint32_t * mask = ctx->llg_res.sample_mask;
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
}
}
}
}
static void llama_sampler_llg_reset(llama_sampler * smpl) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (!ctx->grammar) {
return;
}
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str());
llg_free_constraint(ctx->grammar);
ctx->grammar = grammar_new;
ctx->has_llg_res = false;
}
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_llg *) smpl->ctx;
auto * result = llama_sampler_init_llg(ctx->vocab, nullptr, nullptr);
// copy the state
{
auto * result_ctx = (llama_sampler_llg *) result->ctx;
if (ctx->grammar) {
result_ctx->grammar_kind = ctx->grammar_kind;
result_ctx->grammar_data = ctx->grammar_data;
result_ctx->grammar = llg_clone_constraint(ctx->grammar);
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
}
}
return result;
}
static void llama_sampler_llg_free(llama_sampler * smpl) {
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_free_constraint(ctx->grammar);
llg_free_tokenizer(ctx->tokenizer);
}
delete ctx;
}
static llama_sampler_i llama_sampler_llg_i = {
/* .name = */ llama_sampler_llg_name,
/* .accept = */ llama_sampler_llg_accept_impl,
/* .apply = */ llama_sampler_llg_apply,
/* .reset = */ llama_sampler_llg_reset,
/* .clone = */ llama_sampler_llg_clone,
/* .free = */ llama_sampler_llg_free,
};
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
uint32_t * output_tokens, size_t output_tokens_len) {
const llama_vocab * vocab = (const llama_vocab *) user_data;
int r = 0;
try {
r = llama_tokenize(vocab, (const char *) bytes, bytes_len, (int32_t *) output_tokens, output_tokens_len, false,
true);
} catch (const std::exception & e) {
GGML_ABORT("llama_tokenize failed: %s\n", e.what());
}
if (r < 0) {
return -r;
}
return r;
}
static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) {
// TODO store the tokenizer in the vocab somehow
static const llama_vocab * vocab_cache;
static LlgTokenizer * tokenizer_cache;
if (vocab_cache == vocab) {
return llg_clone_tokenizer(tokenizer_cache);
}
auto tok_eos = llama_vocab_eot(vocab);
if (tok_eos == LLAMA_TOKEN_NULL) {
tok_eos = llama_vocab_eos(vocab);
}
size_t vocab_size = llama_vocab_n_tokens(vocab);
auto token_lens = new uint32_t[vocab_size];
// we typically have ~7 bytes per token; let's go on the safe side here
auto token_bytes_size = vocab_size * 16 + 1024 * 1024;
auto token_bytes = new uint8_t[token_bytes_size];
size_t offset = 0;
for (size_t i = 0; i < vocab_size; i++) {
size_t max_token = 1024;
if (token_bytes_size - offset < max_token) {
GGML_ABORT("token_bytes buffer too small\n");
}
llama_token token = i;
auto dp = (char *) token_bytes + offset;
auto size = llama_detokenize(vocab, &token, 1, dp, max_token, false, false);
if (size < 0) {
GGML_ABORT("llama_detokenize failed\n");
}
if (size == 0) {
size = llama_detokenize(vocab, &token, 1, dp + 1, max_token - 1, false, true);
if (size < 0) {
GGML_ABORT("llama_detokenize failed\n");
}
if (size != 0) {
*dp = '\xff'; // special token prefix marker
size += 1;
}
}
token_lens[i] = size;
offset += size;
}
LlgTokenizerInit tinit = {
/* .vocab_size = */ (uint32_t) vocab_size,
/* .tok_eos = */ (uint32_t) tok_eos,
/* .token_lens = */ token_lens,
/* .token_bytes = */ token_bytes,
/* .tokenizer_json = */ nullptr,
/* .tokenize_assumes_string = */ true,
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
/* .use_approximate_greedy_tokenize_fn = */ false,
/* .tokenize_user_data = */ vocab,
};
char error_buffer[1024];
LlgTokenizer * tokenizer = llg_new_tokenizer(&tinit, error_buffer, sizeof(error_buffer));
delete[] token_bytes;
delete[] token_lens;
if (tokenizer == nullptr) {
LOG_ERR("llg tokenizer error: %s\n", error_buffer);
return tokenizer;
}
if (tokenizer_cache) {
llg_free_tokenizer(tokenizer_cache);
}
vocab_cache = vocab;
tokenizer_cache = tokenizer;
return llg_clone_tokenizer(tokenizer_cache);
}
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * grammar_kind,
const char * grammar_data) {
auto * ctx = new llama_sampler_llg;
if (grammar_kind != nullptr && grammar_kind[0] != '\0') {
auto tokenizer = llama_sampler_llg_new_tokenizer(vocab);
*ctx = {
/* .vocab = */ vocab,
/* .grammar_kind = */ grammar_kind,
/* .grammar_data = */ grammar_data,
/* .tokenizer = */ tokenizer,
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
} else {
*ctx = {
/* .vocab = */ vocab,
/* .grammar_kind = */ {},
/* .grammar_data = */ {},
/* .tokenizer = */ nullptr,
/* .grammar = */ nullptr,
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
}
return new llama_sampler{
/* .iface = */ &llama_sampler_llg_i,
/* .ctx = */ ctx,
};
}
#else
llama_sampler * llama_sampler_init_llg(const llama_vocab *, const char *, const char *) {
LOG_WRN("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
return nullptr;
}
#endif // LLAMA_USE_LLGUIDANCE

View File

@ -156,13 +156,25 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
for (const auto & str : params.grammar_trigger_words) { for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str()); trigger_words.push_back(str.word.c_str());
} }
struct llama_sampler * grmr;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}
auto * result = new common_sampler { auto * result = new common_sampler {
/* .params = */ params, /* .params = */ params,
/* .grmr = */ params.grammar_lazy /* .grmr = */ grmr,
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"),
/* .chain = */ llama_sampler_chain_init(lparams), /* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)), /* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {}, /* .cur = */ {},

View File

@ -102,3 +102,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names); std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars); std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);

51
docs/llguidance.md Normal file
View File

@ -0,0 +1,51 @@
# LLGuidance Support in llama.cpp
[LLGuidance](https://github.com/guidance-ai/llguidance) is a library for constrained decoding (also called constrained sampling or structured outputs) for Large Language Models (LLMs). Initially developed as the backend for the [Guidance](https://github.com/guidance-ai/guidance) library, it can also be used independently.
LLGuidance supports JSON Schemas and arbitrary context-free grammars (CFGs) written in a [variant](https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md) of Lark syntax. It is [very fast](https://github.com/guidance-ai/jsonschemabench/tree/main/maskbench) and has [excellent](https://github.com/guidance-ai/llguidance/blob/main/docs/json_schema.md) JSON Schema coverage but requires the Rust compiler, which complicates the llama.cpp build process.
## Building
To enable LLGuidance support, build llama.cpp with the `LLAMA_LLGUIDANCE` option:
```sh
cmake -B build -DLLAMA_LLGUIDANCE=ON
make -C build -j
```
This requires the Rust compiler and the `cargo` tool to be [installed](https://www.rust-lang.org/tools/install).
## Interface
There are no new command-line arguments or modifications to `common_params`. When enabled, grammars starting with `%llguidance` are passed to LLGuidance instead of the [current](../grammars/README.md) llama.cpp grammars. Additionally, JSON Schema requests (e.g., using the `-j` argument in `llama-cli`) are also passed to LLGuidance.
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/scripts/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
## Performance
Computing a "token mask" (i.e., the set of allowed tokens) for a llama3 tokenizer with 128k tokens takes, on average, 50μs of single-core CPU time for the [JSON Schema Bench](https://github.com/guidance-ai/jsonschemabench). The p99 time is 0.5ms, and the p100 time is 20ms. These results are due to the lexer/parser split and several [optimizations](https://github.com/guidance-ai/llguidance/blob/main/docs/optimizations.md).
## JSON Schema
LLGuidance adheres closely to the JSON Schema specification. For example:
- `additionalProperties` defaults to `true`, unlike current grammars, though you can set `"additionalProperties": false` if needed.
- any whitespace is allowed.
- The definition order in the `"properties": {}` object is maintained, regardless of whether properties are required (current grammars always puts required properties first).
Unsupported schemas result in an error message—no keywords are silently ignored.
## Why Not Reuse GBNF Format?
GBNF lacks the concept of a lexer.
Most programming languages, including JSON, use a two-step process: a lexer (built with regular expressions) converts a byte stream into lexemes, which are then processed by a CFG parser. This approach is faster because lexers are cheaper to evaluate, and there is ~10x fewer lexemes than bytes.
LLM tokens often align with lexemes, so the parser is engaged in under 0.5% of tokens, with the lexer handling the rest.
However, the user has to provide the distinction between lexemes and CFG symbols. In [Lark](https://github.com/lark-parser/lark), lexeme names are uppercase, while CFG symbols are lowercase.
The [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/scripts/gbnf_to_lark.py) can often take care of this automatically.
See [LLGuidance syntax docs](https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#terminals-vs-rules) for more details.
## Error Handling
Errors are currently printed to `stderr`, and generation continues. Improved error handling may be added in the future.

View File

@ -86,6 +86,9 @@ llama_test(test-tokenizer-0 NAME test-tokenizer-0-qwen2 ARGS ${CMAKE
llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
if (LLAMA_LLGUIDANCE)
llama_target_and_test(test-grammar-llguidance.cpp ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf)
endif ()
if (NOT WIN32) if (NOT WIN32)
# these tests are disabled on Windows because they use internal functions not exported with LLAMA_API # these tests are disabled on Windows because they use internal functions not exported with LLAMA_API

View File

@ -129,7 +129,7 @@ static void test_grammar(const std::string & test_desc, const std::string & gram
test(test_desc + ". Grammar: " + grammar_str, grammar_str, passing_strings, failing_strings); test(test_desc + ". Grammar: " + grammar_str, grammar_str, passing_strings, failing_strings);
} }
static void test_schema(const std::string & test_desc, const std::string & schema_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) { static void test_schema(const std::string & test_desc, const std::string & schema_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
test(test_desc + ". Schema: " + schema_str, json_schema_to_grammar(json::parse(schema_str)), passing_strings, failing_strings); test(test_desc + ". Schema: " + schema_str, json_schema_to_grammar(json::parse(schema_str), true), passing_strings, failing_strings);
} }
static void test_simple_grammar() { static void test_simple_grammar() {

File diff suppressed because it is too large Load Diff

View File

@ -1246,7 +1246,7 @@ int main() {
test_all("C++", [](const TestCase & tc) { test_all("C++", [](const TestCase & tc) {
try { try {
tc.verify(json_schema_to_grammar(nlohmann::ordered_json::parse(tc.schema))); tc.verify(json_schema_to_grammar(nlohmann::ordered_json::parse(tc.schema), true));
tc.verify_status(SUCCESS); tc.verify_status(SUCCESS);
} catch (const std::runtime_error & ex) { } catch (const std::runtime_error & ex) {
fprintf(stderr, "Error: %s\n", ex.what()); fprintf(stderr, "Error: %s\n", ex.what());