* New Feature:
1. Sum_Rows:
fix cuda kernel overflow
fix block shape error when nrows too big
2. Im2Col:
Support Batch in cuda
Support f32 to f32 both in cpu && cuda
3. DepthWiseConv:
Support by Im2Col && MulMat
4. Pool_2d:
Supoort avg pooling in cuda
5. HardSigmoid:
Imp in cuda
6. HardSwish:
Imp in cuda
* fix tabs instead of spaces
* code clean
* CUDA POOL2D
* ADD POOL2D test case in test-backend-ops.cpp
* code clean
* fix pool2d_kernel
nits
* fix bug in pool2d kernel
* fix avg pooling, count_include_pad
nits
* test-backend-ops : add more pool_2d tests
* cuda : fix warnings and formatting
* ggml : check types in release builds too in pool_2d
* test-backend-ops : remove f16 pool_2d tests
* cuda : more style fixes
* Add assert in ggml_cuda_op_pool2d
* pool2d float padding fallback
* test-backend-ops : add dst_type to im2col
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Fix Vulkan F16 models
* Fix Vulkan context shift crash
* Add Vulkan to common.cpp dump_non_result_info_yaml function
* Fix bug in Vulkan CPY op
* Fix small matrix multiplication errors in AMD GPUs on Windows or with amdvlk
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
---------
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
* support SYCL backend windows build
* add windows build in CI
* add for win build CI
* correct install oneMKL
* fix install issue
* fix ci
* fix install cmd
* fix install cmd
* fix install cmd
* fix install cmd
* fix install cmd
* fix win build
* fix win build
* fix win build
* restore other CI part
* restore as base
* rm no new line
* fix no new line issue, add -j
* fix grammer issue
* allow to trigger manually, fix format issue
* fix format
* add newline
* fix format
* fix format
* fix format issuse
---------
Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
* server : fix context shift + simplify self-extend
* server : take system_tokens into account
* server : more n_past fixes
* server : rever n_past_se changes
* Changed ugly xxd to literals.
HPP files are much more readable as multiline literals rather than hex arrays.
* Dashes in literal variable names.
Replace . and - with _ in file names -> variable names.
* Comment on removing xxd.
XXD-> string literals
* XXD to string literals.
Replaced these unreadable headers with string literal versions using new deps.sh.
* added cuda float16->float32 upcasting to ggml_cuda_cpy
* added ability to copy 4d tensors with the cuda backend
* added tests for float16_>float32 upcast and 4d tensor cuda copys
* added 4d copy test for float32->float16 copy
* applied patch suggested by @iamlemec
* simplify cpy tests
---------
Co-authored-by: slaren <slarengh@gmail.com>
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* allow empty --prompt-cache file
This allows the use of std::tmpnam(), std::tmpfile(), Python's tempfile.NamedTemporaryFile(), and similar create-empty-file API's for the user.
I switched from the C fopen API to the C++ filesystem api to get around the fact that, to the best of my knowledge, C has no portable way to get the file size above LONG_MAX, with std::ftell() returning long? fallback to std::ifstream for c++ < 17
(the project is currently targeting C++11 it seems - file_exists() and file_size() can be removed when we upgrade to c++17)
* formatting
(requested in codereview)
* remove c++17, file_is_empty
* Fix for a null pointer dereference if a metal GGML buffer fails to be allocated
* Freeing the allocated buffers rather than the pointer in ggml-alloc.c
* Fixed the fix of the fix
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>