11 Commits

Author SHA1 Message Date
Erik Scholz
7487137227
rework convert.py to read hyper-parameters from config.json (#1958)
* Read hyper-parameters from HuggingFace-transformer config.json, if they exist, and fall back to guessing, like before otherwise.
  This allows converting open_llama 3B and other non-standard model designs.
2023-06-22 14:20:47 +02:00
Jiří Podivín
5ddf7ea1fb
hooks : setting up flake8 and pre-commit hooks (#1681)
Small, non-functional changes were made to non-compliant files.
These include breaking up long lines, whitespace sanitation and
unused import removal.

Maximum line length in python files was set to a generous 125 chars,
in order to minimize number of changes needed in scripts and general
annoyance. The "txt" prompts directory is excluded from the checks
as it may contain oddly formatted files and strings for a good reason.

Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
2023-06-17 13:32:48 +03:00
Tom Jobbins
2b2646931b
convert.py: Support models which are stored in a single pytorch_model.bin (#1469)
* Support models in a single pytorch_model.bin

* Remove spurious line with typo
2023-05-17 00:04:35 +02:00
ubik2
95078cc554
convert: add ability to convert safetensors files (#1276)
* when loading a safetensors file, ignore the metadata header
* check for safetensors files first, and only use PyTorch versions when safetensors aren't available
2023-05-08 13:54:26 +02:00
Benjamin Lecaillon
a90e96b266
Convert.py @staticmethod (#1327)
* Line 698 has one #staticmethod and should not

otherwise throw error at unpickle.load() as not callable

* Update convert.py

---------

Co-authored-by: Ivan Stepanov <ivanstepanovftw@gmail.com>
2023-05-05 03:17:07 +03:00
Ivan Stepanov
d3e8093e9b
convert: support DT_BF16 tensors (#1309)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
2023-05-04 18:54:37 +02:00
Cameron
4ad73137a1
add 4_0 to default outfile namestr dict (#1031)
this came up when trying to convert the gpt4all-lora-unfiltered-quantized.bin file
2023-04-17 20:26:23 +02:00
Georgi Gerganov
3173a62eb9
stdout : vertical align outputs for better readibility 2023-04-16 13:59:27 +03:00
comex
74f5899df4
convert.py: Fix loading safetensors and ggml format on Windows (#991)
Calling `mmap.mmap` on Windows apparently resets the file offset of the
raw file object (and makes the BufferedReader return a *negative* file
offset).  For safetensors, avoid using the file offset after calling
mmap.  For GGML format, explicitly save and restore the offset.

Fixes #966.
2023-04-15 23:53:21 +02:00
Pavol Rusnak
43ffdefb74
py : fix flake8 and isort nitpicks (#960) 2023-04-14 14:23:21 +02:00
comex
723dac55fa
py : new conversion script (#545)
Current status: Working, except for the latest GPTQ-for-LLaMa format
  that includes `g_idx`.  This turns out to require changes to GGML, so
  for now it only works if you use the `--outtype` option to dequantize it
  back to f16 (which is pointless except for debugging).

  I also included some cleanup for the C++ code.

  This script is meant to replace all the existing conversion scripts
  (including the ones that convert from older GGML formats), while also
  adding support for some new formats.  Specifically, I've tested with:

  - [x] `LLaMA` (original)
  - [x] `llama-65b-4bit`
  - [x] `alpaca-native`
  - [x] `alpaca-native-4bit`
  - [x] LLaMA converted to 'transformers' format using
        `convert_llama_weights_to_hf.py`
  - [x] `alpaca-native` quantized with `--true-sequential --act-order
        --groupsize 128` (dequantized only)
  - [x] same as above plus `--save_safetensors`
  - [x] GPT4All
  - [x] stock unversioned ggml
  - [x] ggmh

  There's enough overlap in the logic needed to handle these different
  cases that it seemed best to move to a single script.

  I haven't tried this with Alpaca-LoRA because I don't know where to find
  it.

  Useful features:

  - Uses multiple threads for a speedup in some cases (though the Python
    GIL limits the gain, and sometimes it's disk-bound anyway).

  - Combines split models into a single file (both the intra-tensor split
    of the original and the inter-tensor split of 'transformers' format
    files).  Single files are more convenient to work with and more
    friendly to future changes to use memory mapping on the C++ side.  To
    accomplish this without increasing memory requirements, it has some
    custom loading code which avoids loading whole input files into memory
    at once.

  - Because of the custom loading code, it no longer depends in PyTorch,
    which might make installing dependencies slightly easier or faster...
    although it still depends on NumPy and sentencepiece, so I don't know
    if there's any meaningful difference.  In any case, I also added a
    requirements.txt file to lock the dependency versions in case of any
    future breaking changes.

  - Type annotations checked with mypy.

  - Some attempts to be extra user-friendly:

      - The script tries to be forgiving with arguments, e.g. you can
        specify either the model file itself or the directory containing
        it.

      - The script doesn't depend on config.json / params.json, just in
        case the user downloaded files individually and doesn't have those
        handy.  But you still need tokenizer.model and, for Alpaca,
        added_tokens.json.

      - The script tries to give a helpful error message if
        added_tokens.json is missing.
2023-04-14 10:03:03 +03:00