1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-22 17:49:10 +01:00
Commit Graph

6 Commits

Author SHA1 Message Date
Cebtenzzre
bc39553c90
build : enable more non-default compiler warnings () 2023-09-28 17:41:44 -04:00
Cebtenzzre
3aefaab9e5
check C++ code with -Wmissing-declarations () 2023-09-15 15:38:27 -04:00
Stephan Walter
1b107b8550
ggml : generalize quantize_fns for simpler FP16 handling ()
* Generalize quantize_fns for simpler FP16 handling

* Remove call to ggml_cuda_mul_mat_get_wsize

* ci : disable FMA for mac os actions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 19:13:06 +03:00
Borislav Stanimirov
9cbf50c041
build : fix and ignore MSVC warnings () 2023-06-16 21:23:53 +03:00
Kawrakow
1bfc153e2f
ggml : a faster version for Q4_1 x Q8_0 dot products ()
* A faster version for Q4_1 x Q8_0 dot products

The idea nehind being that Q8_0 quantized
values get used many times in the matrix multiplications
where they are involved. In the current implementations,
when we are evaluating the dot products, we need to compute
the sum of the quants in the Q8_0 vector, so the same
operation is repeated many times. Here we pre-compute
the sum during Q8_0 quantization, store it in the
now modified block_q8_0 struct, and then reuse this
result in the subsequent dot products.

In a synthetic benchmark (just compute a bunch of dot
products), this change speeds up the Q4_1 * Q8_0 dot
product by 80%, making the performance identical to
Q4_0 * Q8_0.

In practical application, I see a ~15% gain in speed for
token prediction on M2, and ~5% gain on Ryzen 7950X.
The speed gain in the prompt evaluation is much bigger
(around 50%).

I have only done the change for the scalar version,
ARM_NEON, and AVX2, so we still need an AVX implementation.

* Cleaning up

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-04-21 18:18:26 +03:00
Kawrakow
5ecff35151
Adding a simple program to measure speed of dot products ()
On my Mac, the direct Q4_1 product is marginally slower
(~69 vs ~55 us for Q4_0). The SIMD-ified ggml version
is now almost 2X slower (~121 us).

On a Ryzen 7950X CPU, the direct product for Q4_1 quantization
is faster than the AVX2 implementation (~60 vs ~62 us).

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-04-18 19:00:14 +00:00