The vulkan-shaders-gen was not parsing the --no-clean argument correctly.
Because the previous code was parsing the arguments which have a value only
and the --no-clean argument does not have a value, it was not being parsed
correctly. This commit can now correctly parse arguments that don't have values.
* vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec.
Add some early returns for nonexistent rows in mul_mat_vec shaders. These
can only be hit when dispatching a 2D grid of workgroups. Fix the logic
for the 2D grid of workgroups to round up.
Enable the pipeline robustness extension if it's available, and use it to
disable robustness for these pipelines. The instructions to do the bounds
checking contend for the same ALU resources as the bit twiddling dequant
instructions.
* vulkan: Add GLSL structure aliases for quant types to allow larger loads
In Vulkan it's not possible to cast pointer types, so instead you have to
declare an aliased binding for the memory with a different type. This
commit adds aliases for the quant formats using 16b ints, and in a few
places where the struct size is a multiple of 4 also using 32b ints.
Currently only q4_k's aliases are used, but others will be used in
subsequent commits.
* vulkan: use larger loads in q5_k and q6_k shaders.
Similar to the optimization I did in q4_k recently, this vectorizes some loads
and reduces the number of bit twiddling instructions.
* vulkan: use larger K step per iteration in mul_mat_vec.
Add vec4 dequantization functions, and use them to do K=8 per iteration in
mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B
which helps reduce the load on the memory system.
The K_PER_ITER==2 logic is still there, just for F16/F32, and really only
because they support unaligned sizes.
Tweak the num_iters/unrolling logic to be simpler and catch a couple missed
unrolling opportunities.
* vulkan: Optimize soft_max
Large soft_max could already saturate memory, but small/medium sizes were
pretty slow. The bulk of the gains for them comes from using a smaller
workgroup size, and making the workgroup size match the subgroup size also
makes the barriers much cheaper.
Cache some values in locals to avoid refetching/recomputing. And stamp
out a few "template instantiations" so smaller cases will fully unroll.
Add a missing early return for OOB rows. This happens when there are more
than 512 rows and the dispatch is 512 x H.
* vulkan: Further soft_max optimizations
Restore the workgroup size of 512 case, use it for >1024.
Use unrollable loops for more iteration counts.
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.
Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.
Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.