* Introduce ggml_compute_threadpool
- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems
* Minor fixes
* fixed use after release bug
* fixed a harmless race condition
* Fix Android bulid issue
* fix more race conditions
* fix deadlock for cases where cgraph.n_nodes == 1
and fix --poll case
* threadpool: use cpu_get_num_math to set the default number of threadpool threads
This way we avoid using E-Cores and Hyperthreaded siblings.
* bench: create fresh threadpool for each test
For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).
* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier
This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.
* threadpool: make polling the default to match openmp behavior
All command line args now allow for setting poll to 0 (false).
* threadpool: do not wakeup threads in already paused threadpool
* fix potential race condition in check_for_work
* threadpool: do not create two threadpools if their params are identical
* threadpool: reduce pause/resume/wakeup overhead in common cases
We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.
* threadpool: add support for hybrid polling
poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...
The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.
* threadpool: reduce the number of barrier required
New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.
* threadpool: remove special-casing for disposable threadpools
With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.
Include n_threads in debug print for disposable threadpool.
Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.
* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)
This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.
* threadpool: use relaxed order for chunk sync
Full memory barrier is an overkill for this since each thread works on different chunk
* threadpool: remove abort_callback from threadpool state
* threadpool: better naming for thread/cpumask releated functions
* threadpool: consistent use of int type for n_threads params
* threadpool: add support for ggml_threadpool_params_default/init
Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.
* threadpool: move typedef into ggml.h
* threadpool: fix apply_priority() function name
* threadpool: fix swift wrapper errors due to n_threads int type cleanup
* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled
* threadpool: replace checks for compute_thread ret code with proper status check
* threadpool: simplify threadpool init logic and fix main thread affinity application
Most of the init code is now exactly the same between threadpool and openmp.
* threadpool: update threadpool resume/pause function names
* threadpool: enable openmp by default for now
* threadpool: don't forget to free workers state when omp is enabled
* threadpool: avoid updating process priority on the platforms that do not require it
On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.
* threadpool: update calling thread prio and affinity only at start/resume
This avoids extra syscalls for each graph_compute()
* llama-bench: turn threadpool params into vectors, add output headers, etc
* llama-bench: add support for cool off between tests --delay
This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.
* threadpool: move process priority setting into the apps (bench and cli)
This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.
* threadpool: move all pause/resume logic into ggml
* threadpool: futher api cleanup and prep for future refactoring
All threadpool related functions and structs use ggml_threadpool prefix.
* threadpool: minor indent fixes
* threadpool: improve setprioty error message
* Update examples/llama-bench/llama-bench.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* threadpool: fix indent in set_threadpool call
* use int32_t for n_thread type in public llama.cpp API
* threadpool: use _new and _free instead of _create and _release
* fix two more public APIs to use int32_t for n_threads
* build: set _GNU_SOURCE for Adroid
---------
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
* llama : advanced batch splits
This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.
* llama : always make recurrent state slots contiguous
* ggml : simplify mamba operators
* llama : fix integer signedness mixing
* llama : logits_all has priority over batch->logits
Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.
* llama : apply suggestions
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix t5 segfault
* llama : fix Mamba session save and restore
* llama : minor cosmetic changes
* llama : rename llama_reorder_outputs to llama_output_reorder
Also move it closer to llama_output_reserve.
* llama : fix pooled embeddings when using batches with equal_seqs
* minor : add struct members for clarity
ggml-ci
* llama : fix T5 segfault again
* llama : fix Mamba pooled embeddings with multiple sequences
Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.
* llama : add llama_model_is_recurrent to simplify figuring that out
This will make it easier to more cleanly support RWKV-v6 and Mamba-2.
* llama : fix simple splits when the batch contains embeddings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : std::move llm_bigram_bpe from work_queue
This commit updates the retrieval of llm_bigram_bpe objects from
work_queue.top() by using std::move.
The motivation for this is to avoid the copying of the std::string
`text` member of the llm_bigram_bpe struct.
* squash! llama : std::move llm_bigram_bpe from work_queue
Introduced a MovablePriorityQueue class to allow moving elements
out of the priority queue for llm_bigram_bpe.
* squash! llama : std::move llm_bigram_bpe from work_queue
Rename MovablePriorityQueue to lama_priority_queue.
* squash! llama : std::move llm_bigram_bpe from work_queue
Rename lama_priority_queue -> llama_priority_queue.
* gguf-py : add T5ENCODER model architecture
* common : call llama_decode() during warmup only if the model has decoder
* convert-hf : add T5EncoderModel
* llama : add llama_model_has_decoder() API function
* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()
* llama : add support for LLM_ARCH_T5ENCODER
* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE
* llama-embedding : add support for encoder-only models
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token
* llama : find Llama-3.1 <|eom_id|> token id during vocab loading
* llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* llama : refactor session file management
* llama : saving and restoring state checks for overflow
The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.
* llama : stream from session file instead of copying into a big buffer
Loading session files should no longer cause a memory usage spike.
* llama : llama_state_get_size returns the actual size instead of max
This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.
* llama : share code between whole and seq_id-specific state saving
Both session file types now use a more similar format.
* llama : no longer store all hparams in session files
Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.
* llama : fix uint64_t format type
* llama : various integer type cast and format string fixes
Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.
* llama : remove _context suffix for llama_data_context
* llama : fix session file loading
llama_state_get_size cannot be used to get the max size anymore.
* llama : more graceful error handling of invalid session files
* llama : remove LLAMA_MAX_RNG_STATE
It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.
* llama : cast seq_id in comparison with unsigned n_seq_max
* Add llama 3.1 rope scaling factors to llama conversion and inference
This commit generates the rope factors on conversion and adds them to the resulting model as a tensor. At inference time, these factors are passed to the `ggml_rope_ext` rope oepration, improving results for context windows above 8192
* Update convert_hf_to_gguf.py
Co-authored-by: compilade <git@compilade.net>
* address comments
* address comments
* Update src/llama.cpp
Co-authored-by: compilade <git@compilade.net>
* Update convert_hf_to_gguf.py
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: compilade <git@compilade.net>
* [CANN] Add Ascend NPU backend
Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.
CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.
Co-authored-by: wangshuai09 <391746016@qq.com>
* delete trailing whitespaces
* Modify the code based on review comment
* Rename LLAMA_CANN to GGML_CANN
* Make ggml-common.h private
* add ggml_cann prefix for acl funcs
* Add logging for CANN backend
* Delete Trailing whitespace
---------
Co-authored-by: wangshuai09 <391746016@qq.com>