Commit Graph

74 Commits

Author SHA1 Message Date
ymcki
bc7b1f8632
convert : fix Llama-3_1-Nemotron-51B rope settings (#11008)
* conflict resolution

* move comments after bracket to its own line

* DeciLMCausalModel now reads rope_theta from config.json properly
2024-12-31 13:04:48 +02:00
Yun Dou
b92a14a841
llama : support InfiniAI Megrez 3b (#10893)
* Support InfiniAI Megrez 3b

* Fix tokenizer_clean_spaces for megrez
2024-12-23 01:35:44 +01:00
ymcki
6f0c9e034b
llama : support for Llama-3_1-Nemotron-51B (#10669)
* conflict resolution

* move comments after bracket to its own line
2024-12-23 01:22:33 +01:00
Billel Mokeddem
7ae33a616f
llama : add Falcon3 support (#10883)
* Add Falcon3 model support

* Add fix for adding bos to added special tokens

* Add comment explaining the logic behind the if statement

* Add a log message to better track the when the following line of code is triggered

* Update log to only print when input and output characters are different

* Fix handling pre-normalized tokens

* Refactoring
2024-12-23 00:09:58 +02:00
Georgi Gerganov
5cd85b5e00
convert : add BertForMaskedLM (#10919) 2024-12-21 10:10:18 +02:00
Molly Sophia
0a11f8b7b5
convert : fix RWKV v6 model conversion (#10913)
* Enable --no-context-shift for llama-perplexity example

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV 6: Fix error in ggml_cuda_op_bin_bcast

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-12-20 11:44:58 +02:00
Sukriti Sharma
2fffc52b50
llama : fix Roberta embeddings (#10856)
* fix: Use gpt2 tokenizer for roberta and add eos/bos tokens

Branch: RobertaTokenizer

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fixes to position embeddings

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* map roberta-bpe to gpt-2

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix linting

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
2024-12-19 15:04:51 +02:00
fairydreaming
7585edbdeb
convert : Add support for Microsoft Phi-4 model (#10817)
* convert : use GPT2 vocab for Phi-4 model

* convert : use null value of sliding_window to distinguish Phi-4 from other PHI3-based models

* llama : do not use sliding window attention mask for Phi-4 model

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-12-19 10:37:12 +01:00
Georgi Gerganov
0bf2d10c55
tts : add OuteTTS support (#10784)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
2024-12-18 19:27:21 +02:00
Diego Devesa
4da69d1abd
Revert "llama : add Falcon3 support (#10864)" (#10876)
This reverts commit 382bc7f2e8.
2024-12-18 01:36:46 +01:00
Billel Mokeddem
382bc7f2e8
llama : add Falcon3 support (#10864) 2024-12-17 17:24:56 +02:00
Valentin Mamedov
a0974156f3
llama : add Deepseek MoE v1 & GigaChat models (#10827)
* Add deepseek v1 arch & gigachat template

* improve template code

* add readme

* delete comments

* remove comment

* fix format

* lint llama.cpp

* fix order of deepseek and deepseek2, move gigachat temlate to the end of func

* fix order of deepseek and deepseek2 in constants; mark shared exp as deepseek arch need

* remove comments

* move deepseek above deepseek2

* change placement of gigachat chat template
2024-12-15 19:02:46 +02:00
HimariO
ba1cb19cdd
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor

* Add Qwen2VL cli entrypoint

* [WIP] add qwen2vl arch

* Verify m-rope output

* Add vl-rope/2d-rope support for qwen2vl ViT

* update qwen2vl cli tool

* update 5D tensor op workaround

* [WIP] qwen2vl vision model

* make batch and clip utils compatible with qwen2vl

* [WIP] create inference workflow, gguf convert script but fix

* correcting vision-rope behavior, add the missing last layer back to ViT

* add arg parser to qwen2vl_surgery

* replace variable size array with vector

* cuda-gdb cmake preset

* add fp32 mrope, vision rope kernel

* add fp16 support for qwen2vl and m-rope

* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`

* fix rope op mode switching, out dated func args

* update `llama_hparams`

* update to keep up stream changes

* resolve linter, test errors

* add makefile entry, update speical image padding token

* add mrope unit test, fix few compiler warnings

* rename `mrope` related function, params

* minor updates on debug util, bug fixs

* add `m-rope` testcase to `test-backend-ops`

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix traililng whitespce

* store `llama_hparams.rope_sections` with fixed size array

* update position id tensor size check in GGML_OP_ROPE

* minor updates

* update `ggml_backend_*_supports_op` of unsupported backends

* remote old `rope_section` compare operator

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 14:43:46 +02:00
Robert Collins
62e84d9848
llama : add 128k yarn context for Qwen (#10698)
* add 128k yarn context for Qwen

* added property for model tensors

* removing useless line
2024-12-07 23:12:27 +02:00
Sukriti Sharma
784a14aa49
convert : add support for Roberta embeddings (#10695) 2024-12-07 09:02:14 +02:00
Riccardo Orlando
6fe6247831
llama : add Minerva 7B model support (#10673)
* Support for Minerva 7B

* Update convert_hf_to_gguf_update.py
2024-12-05 20:30:59 +02:00
JFLFY2255
8d0cfd554a
llama: Support MiniCPM-1B (with & w/o longrope) (#10559) 2024-12-04 11:42:50 +02:00
Shane A
80acb7b430
Rename Olmo1124 to Olmo2 (#10500) 2024-11-25 19:36:09 +01:00
Gabe Goodhart
9336db462c
convert : XLMRoberta Type Vocab Size (#10458)
This matches the key in common bert-based embedding models and may have a
value other than 1 in it.

Branch: XLMRobertaTypeVocabSize

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-11-24 11:02:34 +02:00
Shane A
a88ad007de
llama : add OLMo November 2024 support (#10394)
* Add OLMo November 2024 constants

* Add OLMo November 2024 converter

* Add loading of OLMo November 2024 tensors and hyper parameters

* Add building of OLMo November 2024 model
2024-11-19 11:04:08 +02:00
Faisal Zaghloul
60e17ce23c
Remove identical wte/etw logic for jais (#10203) 2024-11-07 08:46:12 -08:00
Xuan Son Nguyen
7554aa4655
convert-lora : make --base optional (#10110)
* convert-lora : make `--base` optional

* lint

* handle case where base_model_name_or_path is invalid

* do not include metadata from base model

* clarify unspecified --base

* add small comment [no ci]

* trigger ci
2024-11-02 12:53:17 +01:00
Georgi Gerganov
bc5ba007b2
server : check that the prompt fits in the slot's context (#10030)
ggml-ci
2024-10-25 10:13:46 +03:00
Molly Sophia
11d47057a5
Rwkv chat template fix (#10001)
* llama: remove useless template matching for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Add comment about the hack for rwkv models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-10-22 15:22:26 +02:00
Molly Sophia
4ff7fe1fb3
llama : add chat template for RWKV-World + fix EOT (#9968)
* Add chat template for RWKV-World

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Fix the chat template not being used

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6: Set EOT token to ``\n\n``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* readme: add rwkv into supported model list

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-10-22 13:33:37 +03:00
compilade
1927378bcc
convert : refactor rope_freqs generation (#9396)
* convert : refactor rope_freqs generation

This should also fix vocab-only conversion for Phi-3.

* convert : adapt MiniCPM3 to separate rope_freqs insertion

MiniCPM3's tokenizer is treated as a SentencePiece tokenizer to avoid
having to run its custom Python code which mixes tokenization
in the same file as tool calls.

gguf-py : add long and short RoPE factors to tensor mappings

Empty, but the key names are used to populate the mappings.
2024-10-01 09:31:36 +03:00
nopperl
f99d3f8367
py : add model class for Chameleon conversion (#9683) 2024-09-29 15:02:06 +03:00
Georgi Gerganov
f4d2b8846a
llama : add reranking support (#9510)
* py : add XLMRobertaForSequenceClassification [no ci]

* py : fix scalar-tensor conversion [no ci]

* py : fix position embeddings chop [no ci]

* llama : read new cls tensors [no ci]

* llama : add classigication head (wip) [no ci]

* llama : add "rank" pooling type

ggml-ci

* server : add rerank endpoint

ggml-ci

* llama : aboud ggml_repeat during classification

* rerank : cleanup + comments

* server : accept /rerank endpoint in addition to /v1/rerank [no ci]

* embedding : parse special tokens

* jina : support v1 reranker

* vocab : minor style

ggml-ci

* server : initiate tests for later

ggml-ci

* server : add docs

* llama : add comment [no ci]

* llama : fix uninitialized tensors

* ci : add rerank tests

ggml-ci

* add reranking test

* change test data

* Update examples/server/server.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add `--reranking` argument

* update server docs

* llama : fix comment [no ci]

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-09-28 17:42:03 +03:00
nopperl
9a913110cf
llama : add support for Chameleon (#8543)
* convert chameleon hf to gguf

* add chameleon tokenizer tests

* fix lint

* implement chameleon graph

* add swin norm param

* return qk norm weights and biases to original format

* implement swin norm

* suppress image token output

* rem tabs

* add comment to conversion

* fix ci

* check for k norm separately

* adapt to new lora implementation

* fix layer input for swin norm

* move swin_norm in gguf writer

* add comment regarding special token regex in chameleon pre-tokenizer

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix punctuation regex in chameleon pre-tokenizer (@compilade)

Co-authored-by: compilade <git@compilade.net>

* fix lint

* trigger ci

---------

Co-authored-by: compilade <git@compilade.net>
2024-09-28 15:08:43 +03:00
Gabe Goodhart
3d6bf6919f
llama : add IBM Granite MoE architecture (#9438)
* feat(gguf-py): Add granitemoe architecture

This includes the addition of new tensor names for the new moe layers.
These may not be correct at this point due to the need for the hack in
gguf_writer.py to double-check the length of the shape for these layers.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add GraniteMoeModel

GraniteMoe has the same configuration deltas as Granite

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(granitemoe convert): Split the double-sized input layer into gate and up

After a lot of staring and squinting, it's clear that the standard mixtral
expert implementation is equivalent to the vectorized parallel experts in
granite. The difference is that in granite, the w1 and w3 are concatenated
into a single tensor "input_linear." Rather than reimplementing all of the
math on the llama.cpp side, the much simpler route is to just split this
tensor during conversion and follow the standard mixtral route.

Branch: GraniteMoE

Co-Authored-By: alex.brooks@ibm.com

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(granitemoe): Implement granitemoe

GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Typo fix in docstring

Co-Authored-By: ggerganov@gmail.com

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(conversion): Simplify tensor name mapping in conversion

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert): Remove unused tensor name mappings

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert): Sanity check on merged FFN tensor sizes

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow "output" layer in granite moe architecture (convert and cpp)

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(granite): Add missing 'output' tensor for Granite

This is a fix for the previous `granite` architecture PR. Recent snapshots
have included this (`lm_head.weights`) as part of the architecture

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-25 10:06:52 +03:00
Gabe Goodhart
0d2ec43833
llama : support IBM Granite architecture (#9412)
* feat(gguf-py): Add Granite model and params to gguf-py

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add registration and param setup for Granite

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Add config parsing for Granite multiplier params

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): First pass at full port of granite deviations from llama

Something is still not working right since the results are mostly terrible,
but on occasion it's producing relevant results at this point, so
_something_ is working.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Determine granite language 3b instruct by vocab size

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel

The defaults in LlamaModel are needed for Granite as well

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Switch Granite param names to use _scale for consistency

Other scalar multipliers are called *_scale, so this provides a more
consistent naming convention.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale

The transformers names with _multiplier will now be converted to the _scale
equivalent during conversion.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-09-17 09:44:58 +03:00
compilade
d54c21df7e
convert : identify missing model files (#9397) 2024-09-16 10:30:22 +03:00
Shane A
0aadac10c7
llama : support OLMoE (#9462) 2024-09-16 09:47:37 +03:00
CarryFun
95ca85168b
llama : support MiniCPM3 (#9322)
Co-authored-by: 范睿凯 <fanruikai@modelbest.cn>
2024-09-16 09:45:20 +03:00
Csaba Kecskemeti
3c7989fd29
py : add "LLaMAForCausalLM" conversion support (#9485)
Co-authored-by: Csaba Kecskemeti <csabakecskemeti@Csabas-Mac-Pro.local>
2024-09-15 10:48:25 +03:00
daminho
c837981bba
py : add Phi-1.5/Phi-2 tokenizer (#9361)
* add phi2 tokenizer

* add phi name to convert_hf_to_gguf_update.py

* make tokenizer_pre consistent; llama.cpp work
2024-09-12 14:28:20 +03:00
Molly Sophia
39f852f440
py : add special tokens in hf_converter for RWKV v6 (#9428)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-12 14:25:16 +03:00
Molly Sophia
0b4ac75772
RWKV v6: Add time_mix_decay_w1/w2 in quant exclusion list (#9387)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-10 10:02:30 +03:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
Molly Sophia
8f1d81a0b6
llama : support RWKV v6 models (#8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 17:38:17 +03:00
Carsten Kragelund Jørgensen
75e1dbbaab
llama : fix llama3.1 rope_freqs not respecting custom head_dim (#9141)
* fix: llama3.1 rope_freqs not respecting custom head_dim

* fix: use potential head_dim for Exaone
2024-08-27 09:53:40 +03:00
Xuan Son Nguyen
3ba780e2a8
lora : fix llama conversion script with ROPE_FREQS (#9117) 2024-08-23 12:58:53 +02:00
Younes Belkada
b40eb84895
llama : support for falcon-mamba architecture (#9074)
* feat: initial support for llama.cpp

* fix: lint

* refactor: better refactor

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix: address comments

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* fix: add more cleanup and harmonization

* fix: lint

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* fix: change name

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

* add in operator

* fix: add `dt_b_c_rms` in `llm_load_print_meta`

* fix: correct printf format for bool

* fix: correct print format

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama : quantize more Mamba tensors

* llama : use f16 as the fallback of fallback quant types

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-21 11:06:36 +03:00
Minsoo Cheong
c679e0cb5c
llama : add EXAONE model support (#9025)
* add exaone model support

* add chat template

* fix whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add ftype

* add exaone pre-tokenizer in `llama-vocab.cpp`

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* fix lint

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* add `EXAONE` to supported models in `README.md`

* fix space

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
2024-08-16 09:35:18 +03:00
Yoshi Suhara
2a24c8caa6
Add Nemotron/Minitron GGUF Conversion & Inference Support (#8922)
* Add nemotron GGUF conversion & inference support

* Fix formatting issues

* Remove unnecessary write_tensors()

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Address comments by @compilade

* Replace ggml_mul_mat()->llm_build_lora_mm()

* Remove mutable variable

* Use  for bias tensors

* Cover corner case for role_scaling not in config.json

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-16 04:23:33 +02:00
Esko Toivonen
6bda7ce6c3
llama : add pre-tokenizer regexes for BLOOM and gpt3-finnish (#8850) 2024-08-15 10:17:12 +03:00
fairydreaming
7c3f55c100
Add support for encoder-only T5 models (#8900)
* gguf-py : add T5ENCODER model architecture

* common : call llama_decode() during warmup only if the model has decoder

* convert-hf : add T5EncoderModel

* llama : add llama_model_has_decoder() API function

* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()

* llama : add support for LLM_ARCH_T5ENCODER

* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE

* llama-embedding : add support for encoder-only models

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-10 11:43:26 +02:00
compilade
3a14e00366
gguf-py : simplify support for quant types (#8838)
* gguf-py : use classes for quants

* convert_hf : simplify internal quantization type selection

* gguf-py : fix flake8 lint

* gguf-py : fix BF16 numpy view type

* gguf-py : remove LlamaFileTypeMap

Too specific to 'llama.cpp', and would be a maintenance burden
to keep up to date.

* gguf-py : add generic quantize and dequantize functions

The quant classes no longer need to be known,
only the target or the source type,
for 'quantize' and 'dequantize', respectively.
2024-08-08 13:33:09 -04:00
Douglas Hanley
cdd1889de6
convert : add support for XLMRoberta embedding models (#8658)
* add conversion for bge-m3; small fix in unigram tokenizer

* clean up and simplify XLMRoberta conversion
2024-08-06 10:20:54 +03:00
Sigbjørn Skjæret
b72c20b85c
Fix conversion of unnormalized BF16->BF16 weights (#7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-02 15:11:39 -04:00