Commit Graph

230 Commits

Author SHA1 Message Date
Johannes Gäßler
16b9cd1939
Convert vector to f16 for dequantize mul mat vec (#1913)
* Convert vector to f16 for dmmv

* compile option

* Added compilation option description to README

* Changed cmake CUDA_ARCHITECTURES from "OFF" to "native"
2023-06-19 10:23:56 +02:00
Johannes Gäßler
b24c3049d9
Added tokens per second to info prints (#1928) 2023-06-18 17:41:26 +02:00
Johannes Gäßler
0ede372a51
Fixed incorrectly applying RMS norm twice (#1925) 2023-06-18 16:07:09 +02:00
Kawrakow
8ab8ba62eb
llama : prevent usage of k-quants when tensor size is not a multiple of 256 (#1921)
* Fix examples/metal

* k-quants: prevent usage when tensor size is not divisible by 256

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-18 11:13:43 +03:00
Georgi Gerganov
ce2c7d72e2
metal : handle buffers larger than device's maxBufferLength (#1826)
* metal : handle buffers larger than device's maxBufferLength

* metal : print more verbose device info + handle errors

* metal : fix prints for overlapping views

* metal : minimize view overlap to try to utilize device memory better
2023-06-18 09:09:47 +03:00
Georgi Gerganov
051e1b0e6a
llama : fix kv_cache n init (close #1903) 2023-06-17 19:31:20 +03:00
Howard Su
3d59ec5935
ggml : fix warnings under MSVC (#1908) 2023-06-17 18:46:15 +03:00
Johannes Gäßler
ac3b886953
llama : fix embd when offloading non-repeating layers (#1891) 2023-06-16 21:25:51 +03:00
Borislav Stanimirov
9cbf50c041
build : fix and ignore MSVC warnings (#1889) 2023-06-16 21:23:53 +03:00
Johannes Gäßler
254a7a7a5f
CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
xaedes
e32089b2c2
train : improved training-from-scratch example (#1652)
* add python wrapper

https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce

* fix decoding error. adds errors=ignore parameter

* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)

* update python bindings

* add text generating baby-llama from scratch example

* fix race condition bug in ggml_compute_forward_diag_mask_f32

* implement ggml_soft_max_back for more performant backward pass of soft_max

avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss

* improve softmax backward pass

go from quadratic runtime to linear runtime by simplifying the formulas

* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build

* improve performance of mul_mat backward pass

avoid transpose by using mul_mat with swapped arguments

* avoid printing too much newlines in baby-llama-text

* activate threading in baby-llama-text

* add ggml_out_prod and use it for mul_mat backward pass for improved performance

performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests

* better weight initialization improves training convergence at start

* better weight initialization improves training convergence at start

* improve ggml_out_prod performance

- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)

* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data

* fix get_samples call, add model tensor names, increase model size, start training samples after newline

* save train trained model to checkpoint and load model to be trained from checkpoint

* use inplace functions where possible

* initialize rng with srand

* use different arguments for input and output checkpoint

* ggml fixes to support backward pass on inplace operations

* remove duplicate include

* fix cross entropy loss

- add target probabilities for each sample which is then used in cross entropy loss

* print used memory before and after optimization

* sample with non-greedy sampling parameters at the end of training

* add cmake target for baby-llama-text

* add ggml_add1_inplace to header

* enable gradient propagation for inplace add1 and scale operations

those functions backward passes don't need the original src0, so they also work when forward is inplace

* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)

also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.

since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.

* use inplace operations in cross_entropy_loss

* fix random weight initialization scale

* add missing default parameters for adam optimizer

* add ggml_opt_context, so that we can properly resume training

otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.

now the optimizer context and all its memory is stored in a separate struct.

* fix bug in llama_sample_token_mirostat_v2

when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.

* add forward function without using cache, for more performant training

during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.

* print suppressed newline tokens as string "\n"

printing too much actual newlines is suppressed to avoid flooding the console.

* store optimizer state in training checkpoint and add learning schedule

persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts

* remove unused functions

* fix bug in get_samples which corrupted training targets

* save checkpoint only when it was trained

* simplify code

* remove trailing whitespace

* simplify backward pass for SQRT

* replace inefficient repeat backward pass with dedicated repeat_back operation

* add ggml_cross_entropy_loss with backward pass for faster training

cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.

* add tests for cross_entropy_loss backward pass

finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues

* use ggml_cross_entropy_loss in text training example

* remove trailing whitespace

* slightly improve how cross entropy loss is compute

btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..

* add llama_get_vocab to get the vocabulary as output parameters

* set default model.type for unknown models with few layers

* add export of training checkpoint to llama compatible model file

* get vocabulary for exporting training checkpoint to llama compatible model file

* implement backward pass of flash attention

* bugfixes for backward pass of flash attention

* test flash attention backward pass

need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.

* add option to train with flash attention and move options to the top of the main function

training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.

flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx

* add train_params and command line option parser

* remove unnecessary comments

* add train params to specify memory size

* remove python bindings

* rename baby-llama-text to train-text-from-scratch

* replace auto parameters in lambda function

* add #include <climits>

* add explicit cast to fix compile error

"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"

* remove trailing whitespace

* add ggml_opt_resume_g which accepts forward and backward cgraphs

* fix formulas in comments

* bug fix for ggml_compute_forward_get_rows_back_f32

the result should be set to zero, not to whatever data is in opt0

* improve training memory usage with scratch buffers

instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.

will compute backward pass for ALL model parameters

* add option to use scratch buffers in training or not

make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.

* ci : disable temporary

* store view offset and permute axes in opt[0] instead of storing it in padding

use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.

* minor : fix compile warnings + minor style changes

* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32

* store view offset like in master branch

* bug fix in forward_batch_wo_cache_flash_attn_train

* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train

data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.

replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.

replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.

* remove unnecessary scratch buffer 0

buf 0 is persistent memory, so we can just disable scratch for this by using buf -1

* avoid creating unnecessary grad tensors

previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.

improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.

* print used training seed

* zero initialize gfbuf and gbbuf

* ci : re-enable workflows + add README for training

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13 22:04:40 +03:00
Kerfuffle
74d4cfa343
Allow "quantizing" to f16 and f32 (#1787)
* Allow "quantizing" to f16 and f32

Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS

Add brief help to the list of quantization types in the quantize tool

Ignore case for quantization type arguments in the quantize tool
2023-06-13 04:23:23 -06:00
Kawrakow
74a6d922f1
Metal implementation for all k_quants (#1807)
* metal : improve q4_K

28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.

* metal : small improvement for Q4_K

* metal : still optimizing Q4_K

This commit pushes it down to 25.3 ms / token.

The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.

Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?

* metal : some more optimizations

Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token

* metal : Q3_K support

Something is not quite right yet.

* metal : Q5_K support

Initial version achieves 31.2 ms/token, 210 GB/s

* metal : still not able to figure out why q3_K does not work

* Minor

* metal : yet another failed attempt to make q3_K work

* metal : optimize Q5_K

31.2 ms -> 27.8 ms.
250 GB/s.

* metal : q3_K still not working

Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?

* metal : q3_K finally working

Not optimized at all.

What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.

No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.

* metal : Q3_K 1st optimization pass

* metal : Q3_K second optimization pass - 29.6 ms/token

* metal : Q3_K cleanup

* metal : fixed accidentally broken Q2_K

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 22:39:21 +03:00
Howard Su
58970a4c39
Leverage mmap for offloading tensors to GPU (#1597)
* Rebase to latest

* Show progress

* Add assert to make sure we only allocate temp buffer for non-CPU backend tensor

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-06-12 14:44:16 +02:00
Kerfuffle
4f0154b0ba
llama : support requantizing models instead of only allowing quantization from 16/32bit (#1691)
* Add support for quantizing already quantized models

* Threaded dequantizing and f16 to f32 conversion

* Clean up thread blocks with spares calculation a bit

* Use std::runtime_error exceptions.
2023-06-10 10:59:17 +03:00
Robert Sung-wook Shin
98ed165574
OpenCL: Add release memory (#1741)
* Add opencl release memory

* Rename function name
2023-06-09 18:24:40 +02:00
Georgi Gerganov
2d7bf110ed
llama : fix vram_scratch var 2023-06-06 22:54:39 +03:00
Georgi Gerganov
2a4e41a086
llama : fix compile warnings 2023-06-06 22:41:53 +03:00
Johannes Gäßler
17366df842
Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)
* CUDA multi GPU + scratch

ggml_cuda_compute_forward

Tensor parallelism

ggml_cuda_add

ggml_cuda_rms_norm

ggml_cuda_silu

CUDA scratch buffer

--main-gpu CLI option
2023-06-06 21:33:23 +02:00
Georgi Gerganov
44f906e853
metal : add f16 support 2023-06-06 20:21:56 +03:00
Georgi Gerganov
7a74dee6b4
llama : temporary disable Q6_K output quantization (#1711) 2023-06-06 09:39:38 +03:00
Spencer Sutton
590250f7a9
metal : add checks for buffer size (#1706)
Co-authored-by: Spencer Sutton <Spencer.Sutton@precisely.com>
2023-06-06 06:28:17 +03:00
mgroeber9110
c2df36d60d
llama : consistently catch and throw only exceptions deriving from std::exception (#1599)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 23:24:29 +03:00
kiltyj
9d0693bce3
metal : use shared buffers between CPU and GPU (#1696)
* Use MTLDevice.newBufferWithBytesNoCopy to share buffers between CPU and GPU

* Page-align buffers used by Metal

* Remove trailing whitespace

* Only import unistd.h for Metal builds

* metal : remove unnecessary copies

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 23:24:04 +03:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00
Henri Vasserman
5220a991a5
Increase 3B scratch buffers. (#1698)
The 128 MB was too optimistic.
Too bad it is not dynamically computed.
2023-06-05 13:43:08 +03:00
Georgi Gerganov
d1f563a743
llama : fix Metal KV cache sync (close #1695) 2023-06-05 10:19:03 +03:00
Georgi Gerganov
ecb217db4f
llama : Metal inference (#1642)
* mtl : export the LLaMA computation graph

* ci : disable temporary

* mtl : adapt the MNIST example as starter

* mtl : no need for mtl-export tool, add cli arg for main instead

* mtl : export just a small part of the graph for now to make it easier

* mtl : move MSL code into separate file for easy editing

* mtl : initial get_rows_q4_0 kernel

* mtl : confirmed get_rows_q4_0 is working correctly

* mtl : add rms_norm kernel + confirm working

* mtl : add mul kernel + confirm working

* mtl : initial mul_mat Q4 kernel (wrong results)

* mtl : mul_mat fixes (still wrong)

* mtl : another mul_mat Q4 (still does not work)

* mtl : working mul_mat q4

* ggml : fix handling of "view" ops in ggml_graph_import()

* mtl : add rope kernel

* mtl : add reshape and transpose handling

* ggml : store offset as opt arg for ggml_view_xd() operators

* mtl : add cpy kernel + handle view ops

* mtl : confirm f16 x f32 attention mul mat

* mtl : add scale kernel

* mtl : add diag_mask_inf kernel

* mtl : fix soft_max kernel

* ggml : update ggml_nbytes() to handle non-contiguous tensors

* mtl : verify V tensor contents

* mtl : add f32 -> f32 cpy kernel

* mtl : add silu kernel

* mtl : add non-broadcast mul kernel

* mtl : full GPU inference of the computation graph

* mtl : optimize rms_norm and soft_max kernels

* mtl : add f16 mat x f32 vec multiplication kernel

* mtl : fix bug in f16 x f32 mul mat + speed-up computation

* mtl : faster mul_mat_q4_0_f32 kernel

* mtl : fix kernel signature + roll inner loop

* mtl : more threads for rms_norm + better timing

* mtl : remove printfs from inner loop

* mtl : simplify implementation

* mtl : add save/load vocab to ggml file

* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)

* mtl : make it work with main example

Lots of hacks but at least now it generates text

* mtl : preparing for merge

* mtl : clean-up ggml mtl interface + suport scratch / inplace

* mtl : remove temp / debug code

* metal : final refactoring and simplification

* Revert "ci : disable temporary"

This reverts commit 98c267fc77.

* metal : add comments

* metal : clean-up stuff, fix typos

* readme : add Metal instructions

* readme : add example for main
2023-06-04 23:34:30 +03:00
0cc4m
dcb2ed4826
OpenCL: Fix duplication of layers in VRAM and RAM, add GPU mul kernel (#1653)
* Use events instead of clFinish, where possible

* OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel

* Reduce queueing overhead for contiguous tensors by using single mul kernel call

* Adapt to #1612 cl_mem malloc changes

* Reduce code duplication between cuda and opencl branches

* Improve implementation
2023-06-04 08:12:05 +02:00
Henri Vasserman
ffb06a345e
OpenLLaMA 3B support (#1588)
This adds support to llama.cpp to load the model.

Currently missing are changes that are required from convert.py to convert the model correctly. It needs some changes to start reading the JSON configuration for HF models instead of deriving the values by guessing.

Co-authored-by: FNsi <125447286+FNsi@users.noreply.github.com>
2023-05-30 21:24:22 +03:00
0cc4m
2e6cd4b025
OpenCL Token Generation Acceleration (#1459)
* Move back to C++ for OpenCL

* Refactor OpenCL code to work more like the CUDA code, add missing functions

* Deduplicate dequant kernels

* Add OpenCL compile options

* Use compile args for preprocessing constants

* Restore default platform + device selection by id behavior

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Henri Vasserman <henv@hot.ee>
2023-05-23 00:33:24 +03:00
Juuso Alasuutari
29cf5596fe
llama : define magic numbers as integer constants (#1518) (#1520)
The underlying representation of multibyte character literals is
implementation-defined. This could, at least in principle, cause
cross-build data export/import issues independent of endianness.

Define magic numbers as integer literals to be on the safe side.

Signed-off-by: Juuso Alasuutari <juuso.alasuutari@gmail.com>
2023-05-20 15:58:15 +03:00
Johannes Gäßler
affc76edfd
cuda : loading models directly into VRAM, norm calculation on GPU, broadcasting for ggml_mul (#1483)
* Broadcasting for ggml_mul

* CUDA kernel for ggml_mul, norms in VRAM

* GPU weights not in RAM, direct loading with cuFile

* fixup! GPU weights not in RAM, direct loading with cuFile

* fixup! GPU weights not in RAM, direct loading with cuFile

* define default model path once, sync path with readme (#1366)

* ~7% faster Q5_1 AVX2 code (#1477)

* convert.py: Support models which are stored in a single pytorch_model.bin (#1469)

* Support models in a single pytorch_model.bin

* Remove spurious line with typo

* benchmark-matmul: Print the average of the test results (#1490)

* Remove unused n_parts parameter (#1509)

* Fixes #1511 lambda issue for w64devkit (mingw) (#1513)

* Fix for w64devkit and mingw

* make kv_f16 the default for api users (#1517)

* minor : fix compile warnings

* readme : adds WizardLM to the list of supported models (#1485)

* main : make reverse prompt option act as a stop token in non-interactive mode (#1032)

* Make reverse prompt option act as a stop token in non-interactive scenarios

* Making requested review changes

* Update gpt_params_parse and fix a merge error

* Revert "Update gpt_params_parse and fix a merge error"

This reverts commit 2bb2ff1748.

* Update gpt_params_parse and fix a merge error take 2

* examples : add persistent chat (#1495)

* examples : add persistent chat

* examples : fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* tests : add missing header

* ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)

* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics

* ggml : fix scalar implementation of Q4_1 dot

* llama : fix compile warnings in llama_set_state_data()

* llama : fix name shadowing and C4146 (#1526)

* Fix name shadowing and C4146

* Fix if macros not using defined when required

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Code style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix for mingw (#1462)

* llama : add llama_init_backend() API (close #1527)

* feature : add blis and other BLAS implementation support (#1502)

* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Revert "feature : add blis and other BLAS implementation support (#1502)"

This reverts commit 07e9ace0f9.

* GPU weights not in RAM, direct loading with cuFile

* llama : code style fixes + progress print fix

* ggml : ggml_mul better broadcast support

* cmake : workarounds for cufile when CMake version < 3.25

* gg rebase fixup

* Loop in llama.cpp, fixed progress callback

* Attempt clang-tidy fix

* llama : fix vram size computation

* Add forgotten fclose()

---------

Co-authored-by: András Salamon <ott2@users.noreply.github.com>
Co-authored-by: Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Co-authored-by: Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Co-authored-by: rankaiyx <rankaiyx@rankaiyx.com>
Co-authored-by: Stephan Walter <stephan@walter.name>
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
Co-authored-by: Erik Scholz <Green-Sky@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: David Kennedy <dakennedyd@gmail.com>
Co-authored-by: Jason McCartney <jmac@theroot.org>
Co-authored-by: Evan Jones <evan.q.jones@gmail.com>
Co-authored-by: Maxime <672982+maximegmd@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Zenix <zenixls2@gmail.com>
2023-05-20 15:19:28 +03:00
Georgi Gerganov
ec2e10c444
llama : add llama_init_backend() API (close #1527) 2023-05-20 11:06:37 +03:00
Maxime
503db28849
llama : fix name shadowing and C4146 (#1526)
* Fix name shadowing and C4146

* Fix if macros not using defined when required

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Code style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-20 10:22:37 +03:00
Georgi Gerganov
8a203f9fa1 llama : fix compile warnings in llama_set_state_data() 2023-05-20 10:14:43 +03:00
Georgi Gerganov
2d5db48371
ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)
* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics
2023-05-19 22:17:18 +03:00
Georgi Gerganov
4b7e245adf
minor : fix compile warnings 2023-05-19 20:14:51 +03:00
Erik Scholz
5ea4339273
make kv_f16 the default for api users (#1517) 2023-05-18 19:31:01 +02:00
Stephan Walter
dc271c52ed
Remove unused n_parts parameter (#1509) 2023-05-17 22:12:01 +00:00
Georgi Gerganov
5a5aeb1e91
llama : fix unused warning 2023-05-13 16:55:14 +03:00
Johannes Gäßler
905d87b70a
ggml : GPU-accelerated token generation (#1412)
* CUDA kernel for q4_0 dequant. + mat. vec. mult.

* Added q4_1 via template

* Added missing __syncthreads();

* --gpu_layers -> --gpu-layers

* Shorter dequantize_mul_mat_vec line

* q5_0 dequantize_mul_mat kernel

* More readable dequantize_mul_mat_vec logic

* dequantize_mul_mat_vec kernels for q5_1, q8_0, f16

* llama : offload "output" tensor to GPU too + coding style fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 16:38:36 +03:00
xaedes
f954edda93
ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360)
* implement 8 of 14 missing backward pass operations used by llama

- GGML_OP_ADD_AT
- GGML_OP_CPY
- GGML_OP_MUL_MAT (src0.grad)
- GGML_OP_PERMUTE
- GGML_OP_RESHAPE
- GGML_OP_SCALE
- GGML_OP_TRANSPOSE
- GGML_OP_VIEW

implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW.

this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset).
the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0.

still missing backward passes for llama:

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_ROPE
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

* implement 5 of 6 missing backward pass operations used by llama

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK

GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX
GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1.

GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know...

GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF.

Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants.
staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and
functions with "_inplace" are added which are inplace.
in llama we need to call the inplace variants so that it is implemented as before.
for llama backward pass we need to use the non-inplace variants.

still not completely implemented backward passes for llama:

- GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK
- GGML_OP_GET_ROWS: only necessary for tokenizer

* norm & rms_norm can not be threaded:

after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees.

* remove already resolved TODO

* implement backward pass of ggml_rope and ggml_rope_back

* implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back

* add test-grad0.c

* use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console

* test both gradients of mul_mat

* disable graph dot export as it floods console

* bug fixes for silu_back

* successfully test silu backward

* bug fix for scale backward pass

use sum instead of mean for gradient of scalar scale parameter

* successfully test scale backward

* improve performance of sum backward pass

use add1(x,y) instead of add(x,repeat(y,x))

* improve performance of sqr backward pass

use scale(x,y) instead of mul(x,repeat(y,x))

* successfully test rope backward

* bug fix for cpy backward pass

* successfully test cpy backward

* bug fix for reshape backward pass

* successfully test reshape backward

* add test-opt.c

this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c

* correctly implement softmax backward pass using new operation ggml_diag

ggml_diag constructs diagonal matrices with entries.
ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d]

* successfully test soft_max backward

* align shape annotations

* add shape annotations for llama

* de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type.

with this we can duplicate tensor of any typ as long as they are contiguous.

* fix ggml_compute_forward_dup_same_cont for when nelements < nthreads

when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy

* bug fix for add_at forward

required for view backward pass

src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function.

* successfully test view backward

* minor code format improvement

* fix ggml_forward_add functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32.

* fix ggml_forward_add1 functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32.

* test-grad0.c : add print_elements to help with debugging

* successfully test permute backward

* some minor test-grad0 fixes

* fix sub, mul and div functions to work correctly with transposed tensors

uses the same logic as in add

* implement ggml_cont backward pass

* successfully test transpose backward and permute for all permutations

also test sub, mul and div up to max n_dims

* test-grad0.c add TODO for view_2d and view_3d

add_at (required for view backward pass) is a bit tricky for n_dims > 1.

* fix comments

* successfully test diag_mask_inf and diag_mask_zero backward

* test-grad0 : fix test for div

nargs and ndims was swapped, corrupting the stack

* fix diag_mask to work with non-inplace input

* move dup call into the actual add_at functions

* fix get rows backward pass

* successfully test get_rows backward

* fix view backward pass

add nb parameters to add_at like in view.
together with offset they define how to view dst and src0 during the add_at operation.

* successfully test backward pass of view_1d, view_2d and view_3d

* fix backward pass for rms_norm

I would have used formulas from other frameworks, but they differed so I could not decide which is correct.
Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification.

* successfully test backward pass of rms_norm

some tests may fail when gradients are large.
could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds.
when looking at the values the "failed" tests look actually ok. for example:

rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324

it is due to the test logic in check_gradients that they fail.

* add todos for llama backward pass

- implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required)
- repeat is not yet tested and looks like it only works for single element src0 inputs.

* add operation ggml_sum_rows

ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d]

* add missing GGML_OP_SUM_ROWS

* fix backward pass for repeat

requires ggml_sum_rows

* successfully test backward pass of repeat

* update quantization types in switch-case of add_at and add1

* add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.

had to increase maximum number of optimization parameters to train from scratch.

* fix softmax in baby-llama example

* switching from training with adam to lbfgs produces much better results in the baby-llama example

* train with two examples, creating new tensors each time..

* fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt

when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed.
so we need to keep the original gradients and make dups for opt

* train on multiple examples, generate & print tokens with trained model afterwards

ctx0 for evaluation and optimization is renewed for each sample

* add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d

* fix soft_max backward pass for input->ne[1] != 1

* add ggml_log operation necessary for cross entropy loss

* add test for ggml_log gradients

* implement backward pass for ggml_sum_rows, necessary for cross entropy loss

* implement ggml_repeat support for rank > 2 tensors

* add test for ggml_sum_rows gradients

* fix training get_example_targets

predict the next token, not the current token!

* add square_error_loss and cross_entropy_loss functions

* optimize loss over multiple samples

this increases computation graph, need parallel batched forward for more efficiency.

* fix backward pass for add_at and change arguments to have same order as in view

* add ggml_set(ctx, a, b) to set b in view of a and return modified a

necessary to set values into kv_self cache and properly propagate the gradients

* fix kv_self gradients for training

use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients

* replace inplace operations for training with copying operations to allow gradient propagation

* add GGML_ASSERT to catch ggml_rope and back value errors

* add trainable lora-only model with all big matrices C split into A,B with A*B=C

this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices.

training this instead of the normal model resulted in much worse results though...

* vastly improve training results

instead of logit targets 0 and 1 use -1 and +1.

* shorten code using a variable

* change name of GGML_OP_ADD_AT to GGML_OP_ACC

* smaller default values for baby llama model parameters

* update static assert of GGML_OP_COUNT

* remove shape annotations in llama_eval_internal

* revert disabling of threading for rms_norm and norm

* rename print functions in baby-llama example

* fix call to ggml_set_name

* add missing include for strcmp, etc

* remove trailing whitespace

* reduce number of test-grad0 iterations

avoid exceeding timeout of automated tests

* remove busy loop that was used as sleep for slower sinus wave generation

* disable slow tests grad0 and opt to avoid exceeding timeouts

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* ggml : fix compiler warnings + cosmetic changes

* ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* ggml : swap vDSP_vsub args as per documentation

* add parallel batched forward function for baby-llama training

* cleanup code for batched training

* remove trailing whitespace

* minor : fix compiler warnings + indentation style

* ggml : fix null ptr deref in backward pass

* ggml : remove Q4_2 remnants

* ggml : fix clang-tidy warnings

* baby-llama : couple of clang-tidy warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 15:56:40 +03:00
Georgi Gerganov
0cd22e190a
llama : fix various warnings 2023-05-13 11:23:15 +03:00
Georgi Gerganov
738ace394a
llama : free ggml context in set / copy state data (close #1425) 2023-05-13 09:08:52 +03:00
Georgi Gerganov
b9fd7eee57
ggml : remove bit shuffling (#1405)
* ggml : remove Q4_0 bit shufling (ARM NEON)

* ggml : remove Q4_1 bit shuffling (ARM NEON + reference)

* ggml : nibbles_from_floats() + bytes_from_nibbles() (ARM NEON)

* ggml : remove Q4_2 bit shuffling (WIP, BROKEN)

* ggml : remove Q5_0 bit shuffling (ARM NEON)

* ggml : 2x faster scalar implementations

* ggml : remove Q5_1 bit shuffling (ARM NEON + scalar)

* ggml : simplify scalar dot

* ggml : remove WASM SIMD bit shuffling + remove vzip for ARM 32-bit

* ggml : fix Q4_1 quantization

* ggml : update cuBLAS + normalize variable names

* ggml : remove Q4_2 mode

* ggml : minor formatting

* ggml : fix Q5_0 quantization

* scripts : add script for measuring the time per token

* AVX implementations (#1370)

* ggml : uniform 5th bit extraction

* llama : produce error upon loading old model files

* llama : fix model magic/version write

* ggml : speed-up Q5_0 + Q5_1 at 4 threads

* ggml : preserve old Q4 and Q5 formats

* ggml : simplify Q8_1 - no need for low / high sums anymore

* ggml : fix Q8_0 and Q8_1 rounding

* Revert "AVX implementations (#1370)"

This reverts commit 948d124837.

* ggml : fix AVX2 implementation

* sha : update hashes for 7B and 13B

* readme : update timings + remove warning banner

* llama : update v2 PR number to 1405

* ggml : fix WASM comments

* ggml : back to original bit order

* readme : add note that Q4 and Q5 have been changed

* llama : fix return for unknown version

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-05-12 00:23:08 +03:00
Pavol Rusnak
003ba2fb43
llama : fix hparams shadow (#1367)
fixes #1363
2023-05-08 17:48:21 +03:00
Georgi Gerganov
f9a6364912
llama : require first token to be BOS (#1303)
* llama : require first token to be BOS

* scripts : add ppl-run-all.sh

* perplexity : add BOS for each chunk

* readme : update perplexity values after BOS fix

* perplexity : add clarifying comments
2023-05-08 17:41:54 +03:00
Jed Fox
3924088512
Remove default arguments from sampling functions (#1343) 2023-05-06 17:01:47 -04:00
Evan Jones
e216aa0463
llama : only copy used KV cache in get / set state (#1272)
* llama : only copy used KV cache in get / set state

* switch to ggml for copying k, v

* avoid designated initializers
2023-05-02 22:26:13 -04:00
Georgi Gerganov
0e6cbff1b7
llama : fix compile warnings 2023-05-02 23:09:08 +03:00
Robert Brisita
2bb992f034
llama : allow 0 as a seed number. (#1275) 2023-05-02 19:23:44 +03:00
slaren
2d099e5193
ggml: add names to tensors (#1268)
* ggml: add names to tensors

* minor improvements to dot file formatting
2023-05-02 16:03:00 +02:00
Georgi Gerganov
70269cae37
llama : fix session load / save (#1263) 2023-05-01 14:54:59 +03:00
slaren
b925f1f1b0
cuBLAS: fall back to pageable memory if pinned alloc fails (#1233)
* cuBLAS: fall back to pageable memory if pinned alloc fails

* cuBLAS: do not use pinned memory if env variable GGML_CUDA_NO_PINNED is set
2023-05-01 13:32:22 +02:00
Alex Klinkhamer
90b19bd6ee
llama : let context be const when accessing const data (#1261) 2023-05-01 10:24:20 +03:00
Georgi Gerganov
214b6a3570
ggml : adjust mul_mat_f16 work memory (#1226)
* llama : minor - remove explicity int64_t cast

* ggml : reduce memory buffer for F16 mul_mat when not using cuBLAS

* ggml : add asserts to guard for incorrect wsize
2023-04-29 18:43:28 +03:00
Georgi Gerganov
84ca9c2ecf
examples : fix save-load-state + rename llama-util.h 2023-04-29 13:48:11 +03:00
Ivan Stepanov
dd7eff57d8
llama : new sampling algorithms (#1126)
* Sample interface, new samplers.

New samplers:
- locally typical sampling
- tail free sampling
- frequency and presence penalty
- mirostat

Ignore EOS fix: -inf should be used.

* mirostat

* Added --logit-bias and --no-penalize-nl, removed std::span

* Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)

Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)

* Save and load example adjust

* Tests

* Windows build fix

* Windows test fix
2023-04-29 08:34:41 +03:00
slaren
7fc50c051a
cuBLAS: use host pinned memory and dequantize while copying (#1207)
* cuBLAS: dequantize simultaneously while copying memory

* cuBLAS: use host pinned memory

* cuBLAS: improve ggml_compute_forward_mul_mat_f16_f32 with pinned memory

* cuBLAS: also pin kv cache

* fix rebase
2023-04-29 02:04:18 +02:00
Stephan Walter
36d19a603b
Remove Q4_3 which is no better than Q5 (#1218) 2023-04-28 23:10:43 +00:00
Evan Jones
1481a9cf25
llama : add session file format and saved sessions in main (#1169) 2023-04-28 18:59:37 +03:00
0cc4m
7296c961d9
ggml : add CLBlast support (#1164)
* Allow use of OpenCL GPU-based BLAS using ClBlast instead of OpenBLAS for context processing

* Improve ClBlast implementation, avoid recreating buffers, remove redundant transfers

* Finish merge of ClBlast support

* Move CLBlast implementation to separate file

Add buffer reuse code (adapted from slaren's cuda implementation)

* Add q4_2 and q4_3 CLBlast support, improve code

* Double CLBlast speed by disabling OpenBLAS thread workaround

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>

* Fix device selection env variable names

* Fix cast in opencl kernels

* Add CLBlast to CMakeLists.txt

* Replace buffer pool with static buffers a, b, qb, c

Fix compile warnings

* Fix typos, use GGML_TYPE defines, improve code

* Improve btype dequant kernel selection code, add error if type is unsupported

* Improve code quality

* Move internal stuff out of header
* Use internal enums instead of CLBlast enums
* Remove leftover C++ includes and defines
* Make event use easier to read

Co-authored-by: Henri Vasserman <henv@hot.ee>

* Use c compiler for opencl files

* Simplify code, fix include

* First check error, then release event

* Make globals static, fix indentation

* Rename dequant kernels file to conform with other file names

* Fix import cl file name

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-28 17:57:16 +03:00
Georgi Gerganov
574406dc7e
ggml : add Q5_0 and Q5_1 quantization (#1187)
* ggml : add Q5_0 quantization (cuBLAS only)

* ggml : fix Q5_0 qh -> uint32_t

* ggml : fix q5_0 histogram stats

* ggml : q5_0 scalar dot product

* ggml : q5_0 ARM NEON dot

* ggml : q5_0 more efficient ARM NEON using uint64_t masks

* ggml : rename Q5_0 -> Q5_1

* ggml : adding Q5_0 mode

* quantize : add Q5_0 and Q5_1 to map

* ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195)

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-26 23:14:13 +03:00
Ásgeir Bjarni Ingvarsson
87a6f846d3
Allow setting the rng seed after initialization. (#1184)
The llama_set_state_data function restores the rng state to what it
was at the time llama_copy_state_data was called. But users may want
to restore the state and proceed with a different seed.
2023-04-26 22:08:43 +02:00
Georgi Gerganov
7a32fcb3b2
ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1)

* tests : fix test-quantize-fns

* ggml : finalize Q8_0 implementation

* ggml : use q4_0_q8_0 and q4_2_q8_0

* ggml : fix Q8_0 dot product bug (ARM)

* ggml : Q8_0 unroll x2

* ggml : fix bug - using wrong block type

* ggml : extend quantize_fns_t with "vec_dot_type"

* ggml : fix Q8_0 to use 255 values out of 256

* ggml : fix assert using wrong QK4_2 instead of QK4_3
2023-04-25 23:40:51 +03:00
Georgi Gerganov
957c8ae21d
llama : increase scratch buffer size for 65B (ref #1152)
Temporary solution
2023-04-24 18:47:30 +03:00
Georgi Gerganov
c4fe84fb0d
llama : refactor get / set state + remove redundant kv cache API (#1143) 2023-04-24 07:40:02 +03:00
Georgi Gerganov
e4422e299c
ggml : better PERF prints + support "LLAMA_PERF=1 make" 2023-04-23 18:15:39 +03:00
Stephan Walter
c50b628810
Fix CI: ARM NEON, quantization unit tests, editorconfig (#1122) 2023-04-22 10:54:13 +00:00
Georgi Gerganov
872c365a91 ggml : fix AVX build + update to new Q8_0 format 2023-04-22 11:08:12 +03:00
xaedes
b6e7f9b09e
llama : add api for getting/setting the complete state: rng, logits, embedding and kv_cache (#1105)
* reserve correct size for logits

* add functions to get and set the whole llama state:

including rng, logits, embedding and kv_cache

* remove unused variables

* remove trailing whitespace

* fix comment
2023-04-22 09:21:32 +03:00
xaedes
8687c1f258
llama : remember and restore kv cache data pointers (#1104)
because their value is stored in buf and overwritten by memcpy
2023-04-21 18:25:21 +03:00
Georgi Gerganov
d40fded93e
llama : fix comment for "output.weight" tensor 2023-04-21 10:24:02 +03:00
Georgi Gerganov
12b5900dbc
ggml : sync ggml (add GPT-NeoX RoPE implementation) 2023-04-20 23:32:59 +03:00
Kawrakow
38de86a711
llama : multi-threaded quantization (#1075)
* Multi-threading quantization.

Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.

* Multi-threading for quantize-stats

It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.

* Reviewer comments

* Avoiding compiler confusion

After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.

* Still fighting with lambda captures in MSVC

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-20 20:42:27 +03:00
Georgi Gerganov
e0305ead3a
ggml : add Q4_3 quantization (#1082) 2023-04-20 20:35:53 +03:00
slaren
8944a13296
Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00
Georgi Gerganov
77a73403ca
ggml : add new Q4_2 quantization (ARM only) (#1046)
* ggml : Q4_2 ARM

* ggml : add ggml_is_quantized()

* llama : update llama_type_name() with Q4_2 entry

* ggml : speed-up q4_2

- 4 threads: ~100ms -> ~90ms
- 8 threads:  ~55ms -> ~50ms

* ggml : optimize q4_2 using vmlaq_n_f32 + vmulq_n_f32
2023-04-18 23:54:57 +03:00
slaren
315a95a4d3
Add LoRA support (#820) 2023-04-17 17:28:55 +02:00
Arik Poznanski
efd05648c8
llama : well-defined static initialization of complex objects (#927)
* Replaced static initialization of complex objects with a initialization on first use. This prevents an undefined behavior on program run, for example, crash in Release build, works in Debug build

* replaced use of auto with exact type to avoid using -std=c++14

* Made the assessors functions for static maps be static const
2023-04-17 17:41:53 +03:00
Ivan Komarov
f266259ad9
Speedup the AVX-512 implementation of ggml_vec_dot_q4_0() (#933) 2023-04-17 15:10:57 +02:00
Georgi Gerganov
3173a62eb9
stdout : vertical align outputs for better readibility 2023-04-16 13:59:27 +03:00
nanahi
2d3481c721
Fix msys2 build error and warnings (#1009) 2023-04-16 11:13:42 +02:00
Pavol Rusnak
c56b715269
Expose type name from ggml (#970)
Avoid duplication of type names in utils

Co-authored-by: Håkon H. Hitland <haakon@likedan.net>
2023-04-14 20:05:37 +02:00
Georgi Gerganov
9190e8eac8
llama : merge llama_internal.h into llama.h
Hide it behind an #ifdef
2023-04-13 18:04:45 +03:00
Stephan Walter
e7f6997f89
Don't crash on ftype (formerly f16) == 4 (#917) 2023-04-12 15:06:16 +00:00
Stephan Walter
3e6e70d8e8
Add enum llama_ftype, sync ggml_type to model files (#709) 2023-04-11 15:03:51 +00:00
comex
2663d2c678
Windows fixes (#890)
Mostly for msys2 and mingw64 builds, which are different from each other
and different from standard Visual Studio builds.  Isn't Windows fun?

- Define _GNU_SOURCE in more files (it's already used in ggml.c for
  Linux's sake).

- Don't use PrefetchVirtualMemory if not building for Windows 8 or later
  (mingw64 doesn't by default).  But warn the user about this situation
  since it's probably not intended.

- Check for NOMINMAX already being defined, which it is on mingw64.

- Actually use the `increment` variable (bug in my `pizza` PR).

- Suppress unused variable warnings in the fake pthread_create and
  pthread_join implementations for Windows.

- (not Windows-related) Remove mention of `asprintf` from comment;
  `asprintf` is no longer used.

Fixes #871.
2023-04-11 15:19:54 +02:00
comex
180b693a47 Print model version.
Also improve model type printing, and fix indentation of an unrelated
switch statement.
2023-04-10 01:10:46 +02:00
comex
f963b63afa Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt).  (However, I didn't
  include the hack needed to support GPT4All files without conversion.
  Those can still be used after converting them with convert.py from my
  other PR.)

- Support both mmap and read (mmap is used by default, but can be
  disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
  files or on platforms where mmap is not supported).

- Support multi-file models like before, but automatically determine the
  number of parts rather than requiring `--n_parts`.

- Improve validation and error checking.

- Stop using the per-file type field (f16) entirely in favor of just
  relying on the per-tensor type/size fields.  This has no immediate
  benefit, but makes it easier to experiment with different formats, and
  should make it easier to support the new GPTQ-for-LLaMa models in the
  future (I have some work in progress on that front).

- Support VirtualLock on Windows (using the same `--mlock` option as on
  Unix).

    - Indicate loading progress when using mmap + mlock.  (Which led me
      to the interesting observation that on my Linux machine, with a
      warm file cache, mlock actually takes some time, whereas mmap
      without mlock starts almost instantly...)

      - To help implement this, move mlock support from ggml to the
        loading code.

- madvise/PrefetchVirtualMemory support (based on #740)

- Switch from ifstream to the `fopen` family of functions to avoid
  unnecessary copying and, when mmap is enabled, allow reusing the same
  file descriptor for both metadata reads and mmap (whereas the existing
  implementation opens the file a second time to mmap).

- Quantization now produces a single-file output even with multi-file
  inputs (not really a feature as much as 'it was easier this way').

Implementation notes:

I tried to factor the code into more discrete pieces than before.

Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:

- Destructors to make it easier to ensure everything gets cleaned up.

- Exceptions.  I don't even usually use exceptions when writing C++, and
  I can remove them if desired... but here they make the loading code
  much more succinct while still properly handling a variety of errors,
  ranging from API calls failing to integer overflow and allocation
  failure.  The exceptions are converted to error codes at the
  API boundary.)

Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-10 01:10:46 +02:00
unbounded
62cfc54f77
Add quantize-stats command for testing quantization (#728)
Command that calculates some statistics over the errors introduced by
quantization, like mean square error, max error and some percentile errors for layer
weights. Should be useful for testing quantization improvements.

Exposes some internal state from ggml and llama for testing
2023-04-08 00:09:18 +02:00
Ivan Stepanov
4953e9007f
llama : always sort logits before nucleus sampling (#812)
* Always sort logits before nucleus sampling

* remove second normalization

- fix windows build
- remove normalization since std::discrete_distribution does not require it
2023-04-07 19:02:12 +03:00
Georgi Gerganov
986b6ce9f9
ggml, llama : avoid heavy V transpose + improvements (#775)
ggml :

- added ggml_view_3d()
- ggml_view_tensor() now inherits the stride too
- reimplement ggml_cpy() to account for dst stride
- no longer require tensor->data to be memory aligned

llama :

- compute RoPE on 32-bit tensors (should be more accurate)
- store RoPE-ed K in the KV cache
- store transposed V in the KV cache (significant speed-up)
- avoid unnecessary Q copy
2023-04-05 22:07:33 +03:00
Ivan Stepanov
5a8c4f6240
llama : define non-positive top_k; top_k range check (#779)
* Define non-positive top_k; top_k range check

* minor : brackets

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-05 19:20:05 +03:00
Ivan Stepanov
cd7fa95690
Define non-positive temperature behavior (#720) 2023-04-03 02:19:04 +02:00
Christian Falch
e986f94829
Added api for getting/setting the kv_cache (#685)
The api provides access methods for retrieving the current memory buffer for the kv_cache and its token number.
It also contains a method for setting the kv_cache from a memory buffer.

This makes it possible to load/save history - maybe support --cache-prompt paramater as well?

Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
2023-04-02 12:23:04 +02:00
Marian Cepok
c0bb1d3ce2
ggml : change ne to int64_t (#626) 2023-04-02 13:21:31 +03:00
Stephan Walter
81040f10aa
llama : do not allocate KV cache for "vocab_only == true" (#682)
Fixes sanitizer CI
2023-04-02 10:18:53 +03:00
Justine Tunney
ee0c40dd6d Introduce GGML migration tool for new file format
If you deleted your old Meta LLaMA .pth files, then the
migrate-ggml-2023-03-30-pr613.py script will allow you to convert your
old ggml files into the new mmap()'able format.

See #613
2023-03-30 12:28:25 -07:00
Justine Tunney
6f23ba5ee2 Ensure --mlock works properly with mmap() support 2023-03-30 12:28:25 -07:00
Justine Tunney
78ca9838ee Make loading weights 10-100x faster
This is a breaking change that's going to give you three benefits:

1. Your inference commands should load 100x faster
2. You may be able to safely load models 2x larger
3. You can run many concurrent inference processes

This was accomplished by changing the file format so we can mmap()
weights directly into memory without having to read() or copy them
thereby ensuring the kernel can make its file cache pages directly
accessible to our inference processes; and secondly, that the file
cache pages are much less likely to get evicted (which would force
loads to hit disk) because they're no longer competing with memory
pages that were needlessly created by gigabytes of standard i/o.

The new file format supports single-file models like LLaMA 7b, and
it also supports multi-file models like LLaMA 13B. Our Python tool
now merges the foo.1, foo.2, etc. files back into a single file so
that the C++ code which maps it doesn't need to reshape data every
time. That's made llama.cpp so much simpler. Much of its load code
has now been deleted.

Furthermore, this change ensures that tensors are aligned properly
on a 32-byte boundary. That opens the door to seeing if we can get
additional performance gains on some microprocessors, by using ops
that require memory alignment.

Lastly note that both POSIX and the Windows platform are supported

Fixes #91
2023-03-30 12:28:25 -07:00
Slaren
a017390358 Initial windows support (untested) 2023-03-30 12:28:25 -07:00
Slaren
ac184d5147 Always initialize mm_addr and mm_length in llama_model 2023-03-30 12:28:25 -07:00
Slaren
276e5b7811 Unmap the file in llama_free 2023-03-30 12:28:25 -07:00
Slaren
d68c5dc435 Make mmap_file static 2023-03-30 12:28:25 -07:00
Slaren
64bde3ffd4 Fix ggml_init_params in quantize 2023-03-30 12:28:25 -07:00
Slaren
c03ae8dca1 Add mmap support for model files 2023-03-30 12:28:25 -07:00
Georgi Gerganov
0ba76c1e73
llama : fix compile warnings when reading the vocab 2023-03-29 22:13:12 +03:00
Maël Kerbiriou
41318d708e
llama : use the same threshold for OpenBLAS and ggml thread limiting (#577) 2023-03-29 19:10:07 +03:00
thement
d0aaff571c
py : add temporary script to convert old ggml files to newer version (#539)
Co-authored-by: Jakub Horak <jakub.horak@ibawizard.net>
2023-03-28 20:55:42 +03:00
Stephan Walter
436e561931
all : be more strict about converting float to double (#458)
* Be more strict about converting float to double

* Test equivalence of round, SILU implementations

Test module is commented out in CMakeLists.txt because the tests may
take a long time, depending on how much the compiler optimizes.

* Fix softmax in perplexity.cpp

* all : prefer float over double where appropriate

* perplexity : add <cmath>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 19:48:20 +03:00
Stephan Walter
c1f885067c
ggml : introduce structs for the q4 data blocks (#356)
* Introduce structs for the q4 data blocks

* ggml : rename quant struct variables + fix ARM_NEON

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 18:56:03 +03:00
Georgi Gerganov
03f7e33560
Cleanup STL headers + fix embedding examples + minor stuff 2023-03-25 20:51:14 +02:00
Georgi Gerganov
4640eff23d
Don't interefe with BLAS for large prompts by running only 1 thread 2023-03-25 17:03:10 +02:00
slaren
29b7baab67
Add timings for the prompt evaluation (#478) 2023-03-25 16:34:23 +02:00
Georgi Gerganov
2a2e63ce05
Fix nasty bug in ggml_compute_forward_mul_mat_f32() and reenable BLAS 2023-03-25 16:10:14 +02:00
Jed Fox
58e6c9f36f
Add support for file load progress reporting callbacks (#434)
* File load progress reporting

* Move llama_progress_handler into llama_context_params

* Renames

* Use seekg to find file size instead

* More correct load progress

* Call progress callback more frequently

* Fix typo
2023-03-25 07:26:28 +02:00
Chris Kuehl
6f1ee4b640
Fix crash for 65B model with pre-allocated memory (#485) 2023-03-25 06:38:14 +02:00
Georgi Gerganov
7a9b6c3a8b
Reduce memory usage and allocate enough memory for largest context (#473)
* Reduce memory usage and allocate enough memory for large contexts

* Simpler scratch buffer usage

* Reenable BLAS for quantized mul_mat

* Fix number of layers in 30B and 65B

* Fix KV cache size for F32
2023-03-24 23:17:37 +02:00
Georgi Gerganov
31572d9665
Temporary bump the memory buffer size - hopefully fix issues from 483bab2e 2023-03-24 18:23:56 +02:00
Georgi Gerganov
afd220d9c6
Properly free llama_context on failure 2023-03-24 17:21:01 +02:00
comex
563cdc391d
Support calling mlock() on loaded model data on Linux and macOS (#453)
* Support calling mlock() on loaded model data on Linux and macOS

This is enabled by a new --mlock command line option.

Using mlock() disables swapping and memory compression for the model
data.  Doing so can be useful on systems where the model takes up a
large fraction of system RAM.  In my experience, macOS is quite eager to
start compressing llama.cpp's memory, which then makes it halt for a few
seconds while it decompresses, even with a model that uses "only" 25GB
out of 32GB.

Of course, this comes at the cost of forcing the system to swap or
compress other processes' memory instead, so it needs to be used with
care and shouldn't be enabled by default.

In theory it should be possible to support this on Windows as well using
VirtualLock(), but I'm not much of a Windows user.

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-24 17:19:05 +02:00
Luciano
8d4a855c24
Add embedding mode with arg flag. Currently working (#282)
* working but ugly

* add arg flag, not working on embedding mode

* typo

* Working! Thanks to @nullhook

* make params argument instead of hardcoded boolean. remove useless time check

* start doing the instructions but not finished. This probably doesnt compile

* Embeddings extraction support

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-24 17:05:13 +02:00
Georgi Gerganov
3cd8dde0d1 Revert "Fix memory allocation issues and seg faults"
This reverts commit 4870e455b3.

Will provide the correct fix later
2023-03-24 06:22:28 +02:00
Georgi Gerganov
4870e455b3
Fix memory allocation issues and seg faults 2023-03-24 00:11:53 +02:00
Georgi Gerganov
483bab2e3d
Avoid the transposed X branch in the Z = X * Y matrix multiplication (#439)
Should make results reproducible for different number of threads and batch sizes
2023-03-23 23:22:01 +02:00
Yusuf Kağan Hanoğlu
d5850c53ca
Add missing header for memcpy (#386)
fixed: memcpy is not defined
2023-03-22 10:55:45 +02:00
Georgi Gerganov
928480ef5b
Init llama_context_params properly from CLI (#370) 2023-03-22 07:45:14 +02:00
Georgi Gerganov
f5a77a629b
Introduce C-style API (#370)
* Major refactoring - introduce C-style API

* Clean up

* Add <cassert>

* Add <iterator>

* Add <algorithm> ....

* Fix timing reporting and accumulation

* Measure eval time only for single-token calls

* Change llama_tokenize return meaning
2023-03-22 07:32:36 +02:00