* fix: use `malloc` instead of `posix_memalign` in `ggml-metal.m` to make it not crash Electron proccesses
* fix: typo
* fix: use `vm_allocate` instead of `posix_memalign`
* fix: don't call `newBufferWithBytesNoCopy` with `NULL` when `ggml_metal_host_malloc` returns `NULL`
* fix: use `vm_allocate` only on macOS
* Introduce bfloat16 support
Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───┐
0b0000000000000000 brain16
This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───────────────────┐
0b00000000000000000000000000000000 IEEE binary32
The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌─┴─┐┌─┴──────┐
0b0000000000000000 IEEE binary16
This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16
* Remove GGML code that's not needed
* Minimize the GGML API surface area for BF16
* Remove bf16 luts
* Make the GGML header look nicer
* Fix documentation
* Apply ggerganov's fixes for test-backend-ops
* Add BF16 code for new ggml_validate_row_data() function
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy
* cuda : fix bin bcast with non-cont src0
* test-backend-ops : only run all mul mat tests for base types
* llama : disable moe offloading with SYCL
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* support qwen2moe
* fix-review
* metal : support unary ops for nelements % 4 != 0
* metal : require contiguousness for float4 unary kernels
* metal : require contiguousness for float4 unary kernels (cont)
* fix-review
* names : for brevity "SHARED_EXP" -> "SHEXP"
* llama : reuse build_moe_ffn()
* llama : add model type name
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : update mul_mat_id to use the same tensor for all the experts
* update cuda
* minor
* update metal
* update test-backend-ops
* fix cuda
* Update ggml-metal.m
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* update convert.py
* update convert-hf-to-gguf.py
* update convert.py for mixtral hf models
* Update convert-hf-to-gguf.py
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* cuda : support non-pow-2 number of experts
* allow quantize to work for split and merged experts models in the same way
* cleanup + disable mmap automatically with split tensors models
* update imatrix
* test-backend-ops : test qwen argsort
* update grok model loading
* llama : add merged experts tensors to the grok tensor map
* minor
* gguf : bump version
* fix quantizing of merged experts
* convert-hf-to-gguf.py : update grok (untested)
* make linter happy
* cuda/argsort : use shared memory instead of pool memory
* convert : fix grok tensor names
* metal : add support for non-pow-2 argsort
* llama : more loader cleanup, better error checking
* cuda : fix warning
* llama : still use mmap for loading old models, but copy the data to a host buffer
* add review note
* llama : remove ffn tensor counting + add sanity check
ggml-ci
* convert : fix handling of n_experts == None
ggml-ci
* imatrix : fix ncall counters
* llama : produce error if imatrix size does not match
* quantize : terminate on errors + trace logs
ggml-ci
* metal : pad shared memory to 16 bytes
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : greatly reduce logits memory usage
* llama : more compact state saving and reloading
* llama : fix lctx.n_outputs not being set before building graph
* perplexity : adapt to the logits API changes
* perplexity : fix Winogrande, use correct logits for second choice start
The first logits used to evaluate the second choice were not from
the end of the common prefix; instead, they were the logits from the end
of the first choice. This has been corrected.
The previous implementation sometimes had outliers in the scores of
choices for some tasks, and the logic to skip choices words
in the log-likelihood evaluation probably was an attempt to reduce those,
but it was complex and didn't quite seem to be the right thing.
This is simpler now, and the outlier scores aren't there anymore.
* perplexity : normalize spaces and punctuation in Winogrande sentences
* llama : fix embedding conditions
* llama : fix llama_get_embeddings_ith when the resulting id is 0
* llama : fix wrong n_outputs in llama_set_inputs
A mismatch happened when using a smaller n_ubatch than n_batch and then using
llama_batch_get_one(). The decision of what n_outputs should be now almost
fully depends on how lctx.n_outputs is set in llama_decode_internal.
The conditions are simpler this way.
* llama : when saving the state, recalculate n_outputs
This ensures the correct number of outputs for the entire previous batch
is stored in the session file, even when n_ubatch is smaller than n_batch.
* llama : fix not-skipping outputs of non-causal models
* llama : fix running a batch with n_outputs == 0
It previously worked because lctx.inp_out_ids was not initialized,
so it pointed to some garbage address which was somehow still valid when I
ran my tests.
* llama : keep same graph topology even when n_outputs == 0
* ggml : saner ggml_can_repeat with empty tensors
* ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1
* ggml : do not multi-thread ops returning empty tensors
* ggml : make ggml_is_empty public and work with views
* llama : use a vector for ctx->output_ids
* llama : rework reallocation logic for llama_output_reserve
Now comparing the actual size with the new total size of the output buffer
to allow more efficient enabling and disabling of the embeddings
and/or logits output in the future.
* ggml : skip empty tensors in all backends
* llama : fix llama_output_reserve nullptr deref when new_size is 0
* perplexity : make Winogrande work as it does on master
The problems with the Winogrande implementation will
need to be fixed in a separate PR to ease review.
* llama : clearer error messages for invalid logits or embeddings ids
* llama : assert all models that can have inp_out_ids
Since the graph topology is now constant, this presence check
can be done even when there are no outputs.
* llama : assert logits and embd buffers exist before writing to them
* llama : handle errors from llama_output_reserve at call sites
* perplexity : make hellaswag and multiple-choice outputs identical to master
Due to how the KV cache is updated, the logprobs for tokens in a batch
are very slightly affected by the other tokens present in the batch,
so to make hellaswag and multiple-choice return exactly the same results
as on master, the last token of each sequence needs to be evaluated
even though its output is not used at all.
This will probably be changed back in the future to make these benchmarks
a tiny bit faster.
* perplexity : fix division by zero when using less than 100 multiple-choice tasks
* llama : allow loading state saved with a different ctx size
When loading a session file, the context size is now only required to be
at least enough to load the KV cells contained in that session file,
instead of requiring to use exactly the same context size as when saving.
Doing this enables the use-case of extending or shrinking the context size
of a saved session.
This breaks existing session files because the meaning of kv_buf_size
is slightly changed (previously it was the size of the whole KV cache,
now it's only the size of the saved part of it). This allows for
finer-grained sanity checks when loading in an effort to keep kv_buf_size
useful even when the kv_size is changed.
* llama : minor
ggml-ci
* readme : update recent API changes, and warn about Vulkan
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq1_m: basics
* iq1_m: basics-2
* iq1_m: CUDA dequantize works
Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.
* iq1_m: separate shifts for each group of 8 in a block
We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105
Not bad, but slightly higher than
sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
PPL = 9.14 for LLaMA-v2-7B
PPL = 6.63 for LLaMA-v2-13B
* iq1_m: go to 3-bit scales
There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.
We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw
* iq1_m: scalar dot product
* iq1_m: AVX2 dot product
* iq1_m: very slightly faster AVX2 dot product
* iq1_m: ARM_NEON dot product
Works, but very slow (10.5 t/s)
* iq1_m: Metal - dequantize works, dot product does not
* iq1_m: Metal now works
About the same performance as iq1_s.
* iq1_m: minor
* iq1_m: checking pure iq1_m quantization
It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.
* iiq1_m: slightly faster ARM_NEON dot product
10.5 t/s -> 11.65 t/s
* iq1_m: faster ARM_NEON dot product
11.65 t/s -> 14.9 t/s
* iq1_m: another minor ARM_NEON dot product improvement
14.9 -> 15.0 t/s
* iq1_m: small PPL improvement via super-block scale adjustment
After quantizing block scales redo the super-block scale fit.
PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B ) = 8.1624
* iq1_m: adapt to CUDA refactoring
* iq1_m: remove unused variable
We have progressed to warnings being errors.
* iq1_m: add to backend-ops tests
* iq1_m: fix Windows ARM
* iq1_m: use common definition of iq1m_scale_t
* cuda: assert -> NO_DEVICE_CODE
* iq1_M: PR comments
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* k_cache: be able to use Q5_0
* k_cache: be able to use Q5_1 on CODA
* k_cache: be able to use Q5_0 on Metal
* k_cache: be able to use Q5_1 on Metal
* k_cache: be able to use IQ4_NL - just CUDA for now
* k_cache: be able to use IQ4_NL on Metal
* k_cache: add newly added supported types to llama-bench and CUDA supports_op
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* backend : offload large batches to GPU
* fix hip
* code cleanup
* fix CUDA split buffers
* Update ggml-backend-impl.h
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix memset without set_device
* imatrix : remove sched affix from weight names
* sched : add a new split if the current one has too many inputs
reduce max inputs per split
more cleanup
* update backends
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs
ggml-ci
* server : add -ub, --ubatch-size parameter
* fix server embedding test
* llama : fix Mamba inference for pipeline parallelism
Tested to work correctly with both `main` and `parallel` examples.
* llama : limit max batch size to n_batch
* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)
changing this value may improve performance for some systems, but increases memory usage
* fix hip build
* fix sycl build (disable cpy_tensor_async)
* fix hip build
* llama : limit n_batch and n_ubatch to n_ctx during context creation
* llama : fix norm backend
* batched-bench : sync after decode
* swiftui : sync after decode
* ggml : allow ggml_get_rows to use multiple threads if they are available
* check n_ubatch >= n_tokens with non-casual attention
* llama : do not limit n_batch to n_ctx with non-casual attn
* server : construct batch with size of llama_n_batch
* ggml_backend_cpu_graph_compute : fix return value when alloc fails
* llama : better n_batch and n_ubatch comment
* fix merge
* small fix
* reduce default n_batch to 2048
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* using enum as an exit code instead of macros
* update return type from enum to unsigned int
* indentation fix
* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast
* ggml_status to string cast
* GGML_CALL was removed
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Introduce backend GUIDs
Initial proposed implementation of backend GUIDs
(Discussed in https://github.com/ggerganov/ggml/pull/741)
Hardcoded CPU backend GUID (for now)
Change ggml_backend_is_cpu logic to use GUID
* Remove redundant functions
Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion
* Add spaces to match style
Co-authored-by: slaren <slarengh@gmail.com>
* Fix brace style to match
Co-authored-by: slaren <slarengh@gmail.com>
* Add void to () in function signature
Co-authored-by: slaren <slarengh@gmail.com>
* Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid
* add guids to all backends
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Try IQ4_NL with blocks of 64 - does not look good
* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32
* iq4_xs: CUDA works - 133.2 t/s
* iq4_xs: AVX2 dot product
* iq4_xs: ARM_NEON dot product
* iq4_nl: Metal implementation
As usual, Metal / Apple Silicon don't like my quants.
* iq3_xs: minor fix
* iq4_xs: shrink by using IQ3_S for attn_k and attn_q
* iq4_xs: revert using IQ3_S for attn_k and attn_v
PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.
* Fix CI
* iq4_xs: Added forgotten check for 256 divisibility
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding IQ2_S and IQ2_M as a single cumulative commit
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* Resurrecting iq3_xs
After all the experimentation, nothing was better than this.
* Minor PPL improvement via a block scale fudge factor
* Minor improvement via 3 neighbours
* iq3_xs: working scalar and AVX2 dot products
* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)
* iq3_xs: working Metal implementation
* Adding IQ3_M - IQ3_XS mix with mostly Q4_K
* iiq3_xs: a 3.4375 bpw variant
* iq3_xs: make CUDA work for new version
* iq3_xs: make scalar and AVX2 work for new version
* iq3_s: make ARM_NEON work with new version
* iq3_xs: make new version work on metal
Performance is very similar to Q3_K_S
* iq3_xs: tiny Metal speed improvement
* iq3_xs: tiny Metal speed improvement
* Fix stupid warning
* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS
* iq3_xs: rename to iq3_s
* iq3_s: make tests pass
* Move Q3_K_XS mix to 3.25 bpw
* Attempt to fix failing tests
* Another attempt to fix the Windows builds
* Attempt to fix ROCm
* ROCm again
* iq3_s: partial fix for QK_K = 64
* iq3_s: make it work on metal for QK_K = 64
Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.
* Will this fix ROCm?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : embed Metal library source (ggml-metal.metal) into binary
enable by setting WHISPER_EMBED_METAL_LIBRARY
* rename the build option
* rename the preprocessor directive
* generate Metal library embedding assembly on-fly during build process
* iq1_s: WIP basics
* iq1_s: CUDA is working
* iq1_s: scalar CPU dot product
* iq1_s: WIP AVX2 dot product - something is not right
* Fix tests
* Fix shadow warnings
* Fix after merge with latest master
* iq1_s: AVX2 finally works
* iq1_s: ARM_NEON dot product. Works, but not very fast
* iq1_s: better grid
* iq1_s: use IQ2_XXS for attn_output
At a cost of 0.04 extra bpw this gives a big improvement in PPL.
* iq1_s: Metal basics
Dequantize works, but not dot product
* iq1_s: Metal works, but quite slow
As usual, Apple Silicon does not like the code I write.
* iq1_s: Tests
* iq1_s: slightly faster dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : avoid recomputing alibi slopes (CPU)
* llama : reuse hparams.f_max_alibi_bias in all cases
ggml-ci
* ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal)
ggml-ci
* ggml : handle all SRCs (do not break on first null)
ggml-ci
* tests : do not use slope for large soft_max
accumulates too much error
ggml-ci
* ggml : alternative ALiBi without extra tensor
We compute the slopes in the kernel
ggml-ci
* cuda : add ALiBi support in ggml_soft_max_ext
ggml-ci
* ggml : deprecate ggml_alibi
* ggml : support multi-sequence ALiBi (Metal)
ggml-ci
* cuda : add multi-seq ALiBi + remote F16 soft_max
ggml-ci
* ggml : update deprecation message
* ggml : fix pos ptr when no ALiBi
ggml-ci
* cuda : fix performance (pow -> powf)
* cuda : precompute ALiBi constants
* metal : pre-compute ALiBi slopes
ggml-ci
* llama : init kq_pos only if needed
ggml-ci
* test-backend-ops : add null pos test to soft_max
test-backend-ops : replace soft_max tests
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Metal memory: Small memory leak on init, dangling pointer, and unused autorelease pool in graph compute
* SPM header potential fix
* Reverting symlinks
* metal: Log `recommendedMaxWorkingSetSize` on iOS 16+
* Only log on iOS and macOS, ignoring tvOS and other platforms
* Check for Xcode version before using recommendedMaxWorkingSetSize
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.
This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms