177 Commits

Author SHA1 Message Date
Johannes Gäßler
924dd22fd3
Quantized dot products for CUDA mul mat vec (#2067) 2023-07-05 14:19:42 +02:00
Henri Vasserman
acc111caf9
Allow old Make to build server. (#2098)
Also make server build by default.

Tested with Make 3.82
2023-07-04 15:38:04 +03:00
ZhouYuChen
23c7c6fc91
Update Makefile: clean simple (#2097) 2023-07-04 14:15:16 +02:00
ningshanwutuobang
cfa0750bc9
llama : support input embeddings directly (#1910)
* add interface for float input

* fixed inpL shape and type

* add examples of input floats

* add test example for embd input

* fixed sampling

* add free for context

* fixed add end condition for generating

* add examples for llava.py

* add READMD for llava.py

* add READMD for llava.py

* add example of PandaGPT

* refactor the interface and fixed the styles

* add cmake build for embd-input

* add cmake build for embd-input

* Add MiniGPT-4 example

* change the order of the args of llama_eval_internal

* fix ci error
2023-06-28 18:53:37 +03:00
Kawrakow
6769e944c7
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights

* k_quants: WIP super-blocks with 64 weights

Q6_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q4_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)

* k_quants: WIP super-blocks with 64 weights

Q3_K scalar and AVX2 works.

* k_quants: WIP super-blocks with 64 weights

Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar

* k_quants: WIP super-blocks with 64 weights

Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,

* k_quants: WIP super-blocks with 64 weights

Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q3_K working on CUDA.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on CUDA, and with this CUDA is done.

* k_quants: WIP super-blocks with 64 weights

Q6_K working on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Q4_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q2_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.

With that, we have full support for ARM_NEON, although
performance is not quite there.

* k_quants: WIP super-blocks with 64 weights

Slightly more efficient Q3_K and Q5_K

* k_quants: WIP super-blocks with 64 weights

Another small improvement for Q3_K and Q5_K on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.

* k_quants: WIP super-blocks with 64 weights

* We are able to pass preprocessor macros to the Metal
  compiler
* Q6_K works and is actually slightly more efficient than
  the QK_K = 256 version (25.2 ms vs 25.8 ms)

* k_quants: WIP super-blocks with 64 weights

Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).

* k_quants: WIP super-blocks with 64 weights

Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).

* k_quants: WIP super-blocks with 64 weights

Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).

* k_quants: WIP super-blocks with 64 weights

Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).

* k_quants: call them _K, not _k, also on Metal

* k_quants: correctly define QK_K in llama.cpp

* Fixed bug in q4_K quantization added with the 64-block addition

* Simplify via lambda

* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64

Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.

* k_quants: switch Q4_K to 4-bit scales when QK_K = 64

 Here the loss in accuracy is greater than for Q3_K,
 but the Q4_K points still move further to the left on
 the perplexity vs size curve.

* k_quants: forgot to add the Metal changes in last commit

* k_quants: change Q5_K to be type 0 when QK_K = 64

Still needs AVX2 implementation

* k_quants: AVX2 implementation for new 64-weight Q5_K

* k_quants: 10% faster ARM_NEON Q5_K dot product

* k_quants: fixed issue caused by merging with master

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 19:43:07 +03:00
Johannes Gäßler
16b9cd1939
Convert vector to f16 for dequantize mul mat vec (#1913)
* Convert vector to f16 for dmmv

* compile option

* Added compilation option description to README

* Changed cmake CUDA_ARCHITECTURES from "OFF" to "native"
2023-06-19 10:23:56 +02:00
Georgi Gerganov
ce2c7d72e2
metal : handle buffers larger than device's maxBufferLength (#1826)
* metal : handle buffers larger than device's maxBufferLength

* metal : print more verbose device info + handle errors

* metal : fix prints for overlapping views

* metal : minimize view overlap to try to utilize device memory better
2023-06-18 09:09:47 +03:00
Georgi Gerganov
b2416493ab
make : do not print help for simple example 2023-06-17 20:55:03 +03:00
DaniAndTheWeb
86c7571864
make : update for latest Arch (#1701)
With the upcoming change to the openblas package in arch the Makefile workaround is no longer needed.
2023-06-17 19:17:22 +03:00
Randall Fitzgerald
794db3e7b9
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.

Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.

This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.

Summary of the changes:

- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict 
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables

---------

Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 14:53:04 +03:00
SuperUserNameMan
b41b4cad6f
examples : add "simple" (#1840)
* Create `simple.cpp`

* minimalist example `CMakeLists.txt`

* Update Makefile for minimalist example

* remove 273: Trailing whitespace

* removed trailing white spaces simple.cpp

* typo and comments simple.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-16 21:58:09 +03:00
Kawrakow
3d01122610
CUDA : faster k-quant dot kernels (#1862)
* cuda : faster k-quant dot kernels

* Imrove Q2_K dot kernel on older GPUs

We now have a K_QUANTS_PER_ITERATION macro, which should be
set to 1 on older and to 2 on newer GPUs.
With this, we preserve the performance of the original
PR on RTX-4080, and are faster compared to master on
GTX-1660.

* Imrove Q6_K dot kernel on older GPUs

Using the same K_QUANTS_PER_ITERATION macro as last commit,
we preserve performance on RTX-4080 and speed up
Q6_K on a GTX-1660.

* Add LLAMA_CUDA_KQUANTS_ITER to CMakeLists.txt and Makefile

Allowed values are 1 or 2. 2 gives the best performance on
modern GPUs and is set as default. On older GPUs 1 may work
better.

* PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-16 20:08:44 +03:00
daboe01
cf267d1c71
make : add train-text-from-scratch (#1850)
* make finetuning example accessible

* fixed: targed was in wrong line

* fixed: name of executable was wrong

* fixed: naming of binary

* fixed: model path was wrong

* fixed clean target

* Update examples/train-text-from-scratch/README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-15 20:42:48 +03:00
sandyiscool
37e257c48e
make : clean *.so files (#1857) 2023-06-15 20:36:06 +03:00
Kerfuffle
74d4cfa343
Allow "quantizing" to f16 and f32 (#1787)
* Allow "quantizing" to f16 and f32

Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS

Add brief help to the list of quantization types in the quantize tool

Ignore case for quantization type arguments in the quantize tool
2023-06-13 04:23:23 -06:00
rankaiyx
555275a693
make : add SSSE3 compilation use case (#1659) 2023-06-10 09:41:59 +03:00
Georgi Gerganov
5c64a0952e
k-quants : allow to optionally disable at compile time (#1734)
* k-quants : put behind optional compile flag LLAMA_K_QUANTS

* build : enable k-quants by default
2023-06-07 10:59:52 +03:00
Georgi Gerganov
2d43387daf
ggml : fix builds, add ggml-quants-k.o (close #1712, close #1710) 2023-06-06 10:18:03 +03:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00
Georgi Gerganov
ecb217db4f
llama : Metal inference (#1642)
* mtl : export the LLaMA computation graph

* ci : disable temporary

* mtl : adapt the MNIST example as starter

* mtl : no need for mtl-export tool, add cli arg for main instead

* mtl : export just a small part of the graph for now to make it easier

* mtl : move MSL code into separate file for easy editing

* mtl : initial get_rows_q4_0 kernel

* mtl : confirmed get_rows_q4_0 is working correctly

* mtl : add rms_norm kernel + confirm working

* mtl : add mul kernel + confirm working

* mtl : initial mul_mat Q4 kernel (wrong results)

* mtl : mul_mat fixes (still wrong)

* mtl : another mul_mat Q4 (still does not work)

* mtl : working mul_mat q4

* ggml : fix handling of "view" ops in ggml_graph_import()

* mtl : add rope kernel

* mtl : add reshape and transpose handling

* ggml : store offset as opt arg for ggml_view_xd() operators

* mtl : add cpy kernel + handle view ops

* mtl : confirm f16 x f32 attention mul mat

* mtl : add scale kernel

* mtl : add diag_mask_inf kernel

* mtl : fix soft_max kernel

* ggml : update ggml_nbytes() to handle non-contiguous tensors

* mtl : verify V tensor contents

* mtl : add f32 -> f32 cpy kernel

* mtl : add silu kernel

* mtl : add non-broadcast mul kernel

* mtl : full GPU inference of the computation graph

* mtl : optimize rms_norm and soft_max kernels

* mtl : add f16 mat x f32 vec multiplication kernel

* mtl : fix bug in f16 x f32 mul mat + speed-up computation

* mtl : faster mul_mat_q4_0_f32 kernel

* mtl : fix kernel signature + roll inner loop

* mtl : more threads for rms_norm + better timing

* mtl : remove printfs from inner loop

* mtl : simplify implementation

* mtl : add save/load vocab to ggml file

* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)

* mtl : make it work with main example

Lots of hacks but at least now it generates text

* mtl : preparing for merge

* mtl : clean-up ggml mtl interface + suport scratch / inplace

* mtl : remove temp / debug code

* metal : final refactoring and simplification

* Revert "ci : disable temporary"

This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63.

* metal : add comments

* metal : clean-up stuff, fix typos

* readme : add Metal instructions

* readme : add example for main
2023-06-04 23:34:30 +03:00
Johannes Gäßler
3b126f654f
LLAMA_DEBUG adds debug symbols (#1617) 2023-05-28 21:01:02 +02:00
Kerfuffle
0df7d63e5b
Include server in releases + other build system cleanups (#1610)
Set `LLAMA_BUILD_SERVER` in workflow so the `server` example gets build. This currently only applies to Windows builds because it seems like only Windows binary artifacts are included in releases.

Add `server` example target to `Makefile` (still uses `LLAMA_BUILD_SERVER` define and does not build by default)

Fix issue where `vdot` binary wasn't removed when running `make clean`.

Fix compile warnings in `server` example.

Add `.hpp` files to trigger workflow (the server example has one).
2023-05-27 11:04:14 -06:00
Johannes Gäßler
1fcdcc28b1
cuda : performance optimizations (#1530)
* xor hack

* block y dim

* loop unrolling

* Fixed cmake LLAMA_CUDA_BY option

* Removed hipblas compatibility code

* Define GGML_CUDA_DMMV_BLOCK_Y if not defined

* Fewer iters, more ops per iter

* Renamed DMMV X/Y compilation options
2023-05-26 00:07:29 +03:00
0cc4m
2e6cd4b025
OpenCL Token Generation Acceleration (#1459)
* Move back to C++ for OpenCL

* Refactor OpenCL code to work more like the CUDA code, add missing functions

* Deduplicate dequant kernels

* Add OpenCL compile options

* Use compile args for preprocessing constants

* Restore default platform + device selection by id behavior

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Henri Vasserman <henv@hot.ee>
2023-05-23 00:33:24 +03:00
Stefan Sydow
7780e4f479
make : .PHONY clean (#1553) 2023-05-21 17:03:44 +03:00
Zenix
b8ee340abe
feature : support blis and other blas implementation (#1536)
* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix: blas changes on ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-20 17:58:31 +03:00
Georgi Gerganov
ea600071cb
Revert "feature : add blis and other BLAS implementation support (#1502)"
This reverts commit 07e9ace0f9da424d82e75df969642522880feb92.
2023-05-20 12:03:48 +03:00
Zenix
07e9ace0f9
feature : add blis and other BLAS implementation support (#1502)
* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-20 12:02:48 +03:00
sandyiscool
2a5ee023ad
Add alternate include path for openblas (#1476)
In some linux distributions (fedora, for example), the include path for openblas is located at '/usr/local/include'
2023-05-16 10:30:15 +02:00
Georgi Gerganov
bda4d7c215 make : fix PERF build with cuBLAS 2023-05-13 17:25:09 +03:00
DaniAndTheWeb
173d0e6419
makefile: automatic Arch Linux detection (#1332)
This commit is a port of a detection method used in koboldcpp's Makefile in order to automatically set the -lcblas option on Arch Linux
2023-05-05 23:57:14 +02:00
Ionoclast Laboratories
2d13786e91
Fix for OpenCL / clbast builds on macOS. (#1329) 2023-05-05 14:18:21 +02:00
DannyDaemonic
55bc5f0900
Call sh on build-info.sh (#1294) 2023-05-02 17:52:35 -07:00
DannyDaemonic
f4cef87edf
Add git-based build information for better issue tracking (#1232)
* Add git-based build information for better issue tracking

* macOS fix

* "build (hash)" and "CMAKE_SOURCE_DIR" changes

* Redo "CMAKE_CURRENT_SOURCE_DIR" and clearer build messages

* Fix conditional dependency on missing target

* Broke out build-info.cmake, added find_package fallback, and added build into to all examples, added dependencies to Makefile

* 4 space indenting for cmake, attempt to clean up my mess in Makefile

* Short hash, less fancy Makefile, and don't modify build-info.h if it wouldn't change it
2023-05-01 18:23:47 +02:00
Pavol Rusnak
6f79699286
build: add armv{6,7,8} support to cmake (#1251)
- flags copied from Makefile
- updated comments in both CMakeLists.txt and Makefile to match reality
2023-04-30 20:48:38 +02:00
Stephan Walter
f0d70f147d
Various fixes to mat_mul benchmark (#1253) 2023-04-30 12:32:37 +00:00
Georgi Gerganov
214b6a3570
ggml : adjust mul_mat_f16 work memory (#1226)
* llama : minor - remove explicity int64_t cast

* ggml : reduce memory buffer for F16 mul_mat when not using cuBLAS

* ggml : add asserts to guard for incorrect wsize
2023-04-29 18:43:28 +03:00
Georgi Gerganov
305eb5afd5
build : fix reference to old llama_util.h 2023-04-29 13:53:12 +03:00
slaren
7fc50c051a
cuBLAS: use host pinned memory and dequantize while copying (#1207)
* cuBLAS: dequantize simultaneously while copying memory

* cuBLAS: use host pinned memory

* cuBLAS: improve ggml_compute_forward_mul_mat_f16_f32 with pinned memory

* cuBLAS: also pin kv cache

* fix rebase
2023-04-29 02:04:18 +02:00
0cc4m
7296c961d9
ggml : add CLBlast support (#1164)
* Allow use of OpenCL GPU-based BLAS using ClBlast instead of OpenBLAS for context processing

* Improve ClBlast implementation, avoid recreating buffers, remove redundant transfers

* Finish merge of ClBlast support

* Move CLBlast implementation to separate file

Add buffer reuse code (adapted from slaren's cuda implementation)

* Add q4_2 and q4_3 CLBlast support, improve code

* Double CLBlast speed by disabling OpenBLAS thread workaround

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>

* Fix device selection env variable names

* Fix cast in opencl kernels

* Add CLBlast to CMakeLists.txt

* Replace buffer pool with static buffers a, b, qb, c

Fix compile warnings

* Fix typos, use GGML_TYPE defines, improve code

* Improve btype dequant kernel selection code, add error if type is unsupported

* Improve code quality

* Move internal stuff out of header
* Use internal enums instead of CLBlast enums
* Remove leftover C++ includes and defines
* Make event use easier to read

Co-authored-by: Henri Vasserman <henv@hot.ee>

* Use c compiler for opencl files

* Simplify code, fix include

* First check error, then release event

* Make globals static, fix indentation

* Rename dequant kernels file to conform with other file names

* Fix import cl file name

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-28 17:57:16 +03:00
Johannes Gäßler
92a6e13a31
Add Manjaro CUDA include and lib dirs to Makefile (#1212) 2023-04-28 15:40:32 +02:00
slaren
e4cf982e0d
Fix cuda compilation (#1128)
* Fix: Issue with CUBLAS compilation error due to missing -fPIC flag

---------

Co-authored-by: B1gM8c <89020353+B1gM8c@users.noreply.github.com>
2023-04-24 17:29:58 +02:00
Georgi Gerganov
e4422e299c
ggml : better PERF prints + support "LLAMA_PERF=1 make" 2023-04-23 18:15:39 +03:00
Georgi Gerganov
872c365a91 ggml : fix AVX build + update to new Q8_0 format 2023-04-22 11:08:12 +03:00
slaren
50cb666b8a
Improve cuBLAS performance by using a memory pool (#1094)
* Improve cuBLAS performance by using a memory pool

* Move cuda specific definitions to ggml-cuda.h/cu

* Add CXX flags to nvcc

* Change memory pool synchronization mechanism to a spin lock
General code cleanup
2023-04-21 21:59:17 +02:00
slaren
2005469ea1
Add Q4_3 support to cuBLAS (#1086) 2023-04-20 20:49:53 +02:00
源文雨
5addcb120c
fix: LLAMA_CUBLAS=1 undefined reference 'shm_open' (#1080) 2023-04-20 15:28:43 +02:00
slaren
02d6988121
Improve cuBLAS performance by dequantizing on the GPU (#1065) 2023-04-20 03:14:14 +02:00
Stephan Walter
f3d4edf504
ggml : Q4 cleanup - remove 4-bit dot product code (#1061)
* Q4 cleanup

* Remove unused AVX512 Q4_0 code
2023-04-19 19:06:37 +03:00
slaren
8944a13296
Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00