* add control-vector-generator
* calc diff
* add comments
* proof-of-concept stdlib implementation
Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.
* param parsing, refactor, comments
Added basic command-line parameters for outfile and one each positive/negative prompt.
Refactored some messy code in PCA computation and GGUF exporting.
Left a bunch of comments regarding further work needed.
* example template completions
Implements an example template set built from the positive/negative prompts like the control vector Python implementation.
* add multi prompts, multi-thread for PCA
* fix mem error
* add debugs
* fix matrix transpose multiplication
you have got to be kidding me
* preliminary template/multiprompt support
model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish
* fix zero output & param parsing, functional templating
fixed a bug where the output file had no tensor data/was all zero
fixed a bug where single hyphen flags were not being correctly parsed
implements creation of templated prompts from input (still need to adapt based on model)
* fix square_diff matmul index range and CRLF->LF line endings
fixed a logic error where square_diff would not multiply all rows
fixed a formatting error where the provided completions.txt had CRLF line endings
* add command-line args for num threads, num completions file lines, always reload model
refactored a few things and did what the commit message says on the tin
* code aestheticization
* fix compiler warnings
* in-series multithreading for prompt embedding?
added commented-out code to attempt to start implementing mutlithreading for embedding in main
* remove unnecessary multithreading
* interim fix memory leak
* translated everything but PCA (I think)
* tentatively translate the rest
* fix ggml errors and make new ones
at least it compiles and runs
* fix cb_eval
* temporary commit while I move dev environments
it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent
* update debug statements
* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped
* update comments
* (wip) refactor
* clean up PCA ggml implementation
* fix shape of v_diff_original
* add n_batch for pca
* working version
* remember to copy back the last_eigenvector
* fix n_completions
* bring back n_completions
* default n_pca_batch to 20
* fix macos build
* add to makefile all targets
* use ggml_format_name
* add readme
* fix .editorconfig
* use ggml_backend_tensor_copy
* attemp to fix compile problem on mac
* fix compile warn
* reuse allocr
* move param parser to common
* better error handling
* clean up a bit
* add print_usage
* shorten help msg
* beautify help msg
* escape prompt by default
* change compile target to llama-cvector-generator
* typo
* disable GPU for PCA
* code style
---------
Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
* separate DPCT helpers outside
* replace global variables with context
* remove useless extra
* update mul_mat condition
* remove duplicate buft initialization
* remove duplicate extra and global work group size
* remove useless backend check
* remove duplicated extras
* use macro for group_size and remove cuda-related
* support for Poro chat pre-tokenizer
* add support for Poro pre-tokenizer
* Update convert-hf-to-gguf-update.py
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Change Poro-34B-chat to poro-chat
* Change Poro-34B-chat to poro-chat
* Update convert-hf-to-gguf-update.py
* Update llama.cpp
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* move BLAS to a separate backend
* rename GGML_USE_OPENBLAS to GGML_USE_BLAS
* alloc : reuse same buffer when the same buffer type if used multiple times
* set number of threads automatically for openblas and blis
* sched : print assignments when GGML_SCHED_DEBUG env variable is set
* sched : allow ops with weights on an incompatible buffer type
This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update Vulkan RoPE implementation
* Return nullptr on alloc_buffer when allocation fails, instead of throwing an exception
Minor fixes
* Fix segfault when running out of VRAM
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
* try to fix CUDA ci with --allow-unsupported-compiler
* trigger when build.yml changes
* another test
* try exllama/bdashore3 method
* install vs build tools before cuda toolkit
* try win-2019
This commit adds pull_request_template.md and CONTRIBUTING.md . It focuses on explaining to contributors the need to rate PR complexity level, when to add [no ci] and how to format PR title and descriptions.
Co-authored-by: Brian <mofosyne@gmail.com>
Co-authored-by: compilade <git@compilade.net>
In #7075, to fix the conversion of (some) models using model-00001-of-00001.safetensors instead of model.safetensors for a single model part we simply used the same logic as the part count to get the part names.
But this doesn't always work correctly, like when unusual additional model files like consolidated.safetensors in https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3 are present.
This commit matching both the prefix and the suffix of the model part names should fix this problem without breaking any previously-supported upstream models. But according to report by @teleprint-me there is still some
persistent problem, but shall do in the meantime.
Main changes of this PR is to consolidate GGUFWriter.add_key and GGUFWriter.add_val into GGUFWriter.add_key_value.
In addition use_temp_file is now opt-in instead of opt-out defaulting to False.
Also GGUFWriter now does not require output file name until when actually writing to it.
And GGUFWriter doesn't really need to eagerly prepare the data layout of the metadata
This can be changed back later if the name change is wrong.
I was renaming the functions anyway to generalize kv-cache-related
functions to hybrid and recurrent model architectures.
I think llama_past is a better name than llama_cache for a combined
kv cache and recurrent state cache, because the states it contains
pretty much always come before the newly-added ones for any particular
sequence. Also 'llama_past_clear' sounds more obvious in what it does
than 'llama_kv_cache_clear'. The future is what the models generate.
(For embeddings, the kv cache isn't really used anyway)
Still, I'm open to better suggestions.
* server : Smart selection of available slot using Longest Common Substring
* add usage
* remove trailing whitespaces
* Use Longest Common Prefix (LCP) instead of LCS
* Rename argument