Commit Graph

96 Commits

Author SHA1 Message Date
slaren
5fb5e24811
llama : minor sampling refactor (2) (#9386) 2024-09-09 17:10:46 +02:00
slaren
19f4a7b296
llama : refactor samplers internal implementation (#9370) 2024-09-08 15:52:07 +02:00
slaren
eae597182c
llama : sanitize tokens in the upper bound (#9359) 2024-09-08 12:41:51 +02:00
Kevin Gibbons
fbb7fcffbc
llama : set attrs of mislabelled EOT/EOM tokens (#9348) 2024-09-08 08:51:00 +03:00
Georgi Gerganov
f12295b8a9
llama : fix empty ring buffer push (#9358) 2024-09-08 00:33:33 +03:00
Georgi Gerganov
faf69d4237
llama : sanitize invalid tokens (#9357)
* common : do not add null tokens during warmup

ggml-ci

* llama : check that the input tokens are valid

ggml-ci

* tests : fix batch size of bert model

ggml-ci
2024-09-08 00:33:13 +03:00
Georgi Gerganov
df270ef745
llama : refactor sampling v2 (#9294)
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
2024-09-07 15:16:19 +03:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
Radoslav Gerganov
82e3b03c11
rpc : make RPC servers come first in the device list (#9296)
* rpc : make RPC servers come first in the device list

* rpc : disable options for non-RPC builds

* rpc : rpc_count always zero for non-RPC builds
2024-09-04 11:08:32 +03:00
Zhenwei Jin
f1485161e5
src: make tail invalid when kv cell is intersection for mamba (#9249) 2024-09-02 13:53:23 -04:00
Georgi Gerganov
c6d4cb4655
llama : minor style 2024-09-02 11:52:37 +03:00
Molly Sophia
8f1d81a0b6
llama : support RWKV v6 models (#8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 17:38:17 +03:00
Daniel Bevenius
49271efbaf
llama : fix typo in xcda_array_view comment [no ci] (#9132) 2024-08-31 10:50:22 +03:00
Faisal Zaghloul
42c76d1358
Threadpool: take 2 (#8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-30 01:20:53 +02:00
compilade
78eb487bb0
llama : fix qs.n_attention_wv for DeepSeek-V2 (#9156) 2024-08-27 13:09:23 +03:00
CausalLM
2e59d61c1b
llama : fix ChatGLM4 wrong shape (#9194)
This should fix THUDM/glm-4-9b-chat-1m and CausalLM/miniG
2024-08-27 09:58:22 +03:00
Carsten Kragelund Jørgensen
75e1dbbaab
llama : fix llama3.1 rope_freqs not respecting custom head_dim (#9141)
* fix: llama3.1 rope_freqs not respecting custom head_dim

* fix: use potential head_dim for Exaone
2024-08-27 09:53:40 +03:00
Justine Tunney
436787f170
llama : fix time complexity of string replacement (#9163)
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
2024-08-26 09:09:53 +03:00
Johannes Gäßler
f91fc5639b
CUDA: fix Gemma 2 numerical issues for FA (#9166) 2024-08-25 22:11:48 +02:00
Johannes Gäßler
e11bd856d5
CPU/CUDA: Gemma 2 FlashAttention support (#8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-24 21:34:59 +02:00
piDack
a07c32ea54
llama : use F32 precision in GLM4 attention and no FA (#9130) 2024-08-23 10:27:17 +03:00
compilade
a1631e53f6
llama : simplify Mamba with advanced batch splits (#8526)
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 17:58:11 -04:00
Younes Belkada
b40eb84895
llama : support for falcon-mamba architecture (#9074)
* feat: initial support for llama.cpp

* fix: lint

* refactor: better refactor

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix: address comments

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* fix: add more cleanup and harmonization

* fix: lint

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* fix: change name

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

* add in operator

* fix: add `dt_b_c_rms` in `llm_load_print_meta`

* fix: correct printf format for bool

* fix: correct print format

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama : quantize more Mamba tensors

* llama : use f16 as the fallback of fallback quant types

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-21 11:06:36 +03:00
Daniel Bevenius
8455340b87
llama : std::move llm_bigram_bpe from work_queue (#9062)
* llama : std::move llm_bigram_bpe from work_queue

This commit updates the retrieval of llm_bigram_bpe objects from
work_queue.top() by using std::move.

The motivation for this is to avoid the copying of the std::string
`text` member of the llm_bigram_bpe struct.

* squash! llama : std::move llm_bigram_bpe from work_queue

Introduced a MovablePriorityQueue class to allow moving elements
out of the priority queue for llm_bigram_bpe.

* squash! llama : std::move llm_bigram_bpe from work_queue

Rename MovablePriorityQueue to lama_priority_queue.

* squash! llama : std::move llm_bigram_bpe from work_queue

Rename lama_priority_queue -> llama_priority_queue.
2024-08-21 10:32:58 +03:00
Yoshi Suhara
2fb9267887
Fix incorrect use of ctx_split for bias tensors (#9063) 2024-08-17 15:34:21 +02:00
Minsoo Cheong
c679e0cb5c
llama : add EXAONE model support (#9025)
* add exaone model support

* add chat template

* fix whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add ftype

* add exaone pre-tokenizer in `llama-vocab.cpp`

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* fix lint

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* add `EXAONE` to supported models in `README.md`

* fix space

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
2024-08-16 09:35:18 +03:00
Yoshi Suhara
2a24c8caa6
Add Nemotron/Minitron GGUF Conversion & Inference Support (#8922)
* Add nemotron GGUF conversion & inference support

* Fix formatting issues

* Remove unnecessary write_tensors()

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Address comments by @compilade

* Replace ggml_mul_mat()->llm_build_lora_mm()

* Remove mutable variable

* Use  for bias tensors

* Cover corner case for role_scaling not in config.json

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-16 04:23:33 +02:00
Zhenwei Jin
4af8420afb
common : remove duplicate function llama_should_add_bos_token (#8778) 2024-08-15 10:23:23 +03:00
Esko Toivonen
6bda7ce6c3
llama : add pre-tokenizer regexes for BLOOM and gpt3-finnish (#8850) 2024-08-15 10:17:12 +03:00
Nico Bosshard
0fd93cdef5
llama : model-based max number of graph nodes calculation (#8970)
* llama : model-based max number of graph nodes calculation

* Update src/llama.cpp

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-12 17:13:59 +02:00
Liu Jia
2589292cde
Fix a spelling mistake (#9001) 2024-08-12 11:46:03 +02:00
fairydreaming
33309f661a
llama : check all graph nodes when searching for result_embd_pooled (#8956)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-11 10:35:26 +02:00
Xuan Son Nguyen
7eb23840ed
llama : default n_swa for phi-3 (#8931)
* default n_swa for phi-3

* fix

* double check swa
2024-08-10 13:04:40 +02:00
fairydreaming
7c3f55c100
Add support for encoder-only T5 models (#8900)
* gguf-py : add T5ENCODER model architecture

* common : call llama_decode() during warmup only if the model has decoder

* convert-hf : add T5EncoderModel

* llama : add llama_model_has_decoder() API function

* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()

* llama : add support for LLM_ARCH_T5ENCODER

* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE

* llama-embedding : add support for encoder-only models

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-10 11:43:26 +02:00
fairydreaming
6afd1a99dc
llama : add support for lora adapters in T5 model (#8938)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-09 18:53:09 +02:00
Georgi Gerganov
45a55b91aa
llama : better replace_all (cont) (#8926)
* llama : better replace_all (cont)

ggml-ci

* code : deduplicate replace_all

ggml-ci
2024-08-09 18:23:52 +03:00
Daniel Bevenius
6f6496bb09
llama : fix typo in llama_tensor_get_type comment [no ci] (#8937) 2024-08-09 09:32:23 +03:00
compilade
345a686d82
llama : reduce useless copies when saving session (#8916)
* llama : avoid useless copies in dummy session writer

* llama : avoid double tensor copy when saving session to buffer
2024-08-08 23:54:00 -04:00
Douglas Hanley
cdd1889de6
convert : add support for XLMRoberta embedding models (#8658)
* add conversion for bge-m3; small fix in unigram tokenizer

* clean up and simplify XLMRoberta conversion
2024-08-06 10:20:54 +03:00
fairydreaming
d3f0c7166a
Stop the generation when <|eom_id|> token is encountered - needed for Llama 3.1 tool call support (#8858)
* gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token

* llama : find Llama-3.1 <|eom_id|> token id during vocab loading

* llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-05 09:38:01 +02:00
Georgi Gerganov
f1ea5146d7
llama : better replace_all (#8852) 2024-08-05 08:53:39 +03:00
pculliton
398ede5efe
Adding Gemma 2 2B configs (#8784)
* Adding Gemma 2 2B configs

Updates to Q scaling and Gemma 2 model sizes to match v2 2B model.

* Update src/llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-07-31 17:12:10 +02:00
compilade
4c676c85e5
llama : refactor session file management (#8699)
* llama : refactor session file management

* llama : saving and restoring state checks for overflow

The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.

* llama : stream from session file instead of copying into a big buffer

Loading session files should no longer cause a memory usage spike.

* llama : llama_state_get_size returns the actual size instead of max

This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.

* llama : share code between whole and seq_id-specific state saving

Both session file types now use a more similar format.

* llama : no longer store all hparams in session files

Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.

* llama : fix uint64_t format type

* llama : various integer type cast and format string fixes

Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.

* llama : remove _context suffix for llama_data_context

* llama : fix session file loading

llama_state_get_size cannot be used to get the max size anymore.

* llama : more graceful error handling of invalid session files

* llama : remove LLAMA_MAX_RNG_STATE

It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.

* llama : cast seq_id in comparison with unsigned n_seq_max
2024-07-28 00:42:05 -04:00
Jeffrey Morgan
b5e95468b1
llama : add support for llama 3.1 rope scaling factors (#8676)
* Add llama 3.1 rope scaling factors to llama conversion and inference

This commit generates the rope factors on conversion and adds them to the resulting model as a tensor. At inference time, these factors are passed to the `ggml_rope_ext` rope oepration, improving results for context windows above 8192

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* address comments

* address comments

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2024-07-27 15:03:45 +03:00
Georgi Gerganov
92090eca21
llama : add function for model-based max number of graph nodes (#8622)
* llama : model-based max number of graph nodes

ggml-ci

* llama : disable 405B max_nodes path due to lack of complaints

ggml-ci
2024-07-27 14:59:29 +03:00
slaren
2b1f616b20
ggml : reduce hash table reset cost (#8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-07-27 04:41:55 +02:00
Judd
01245f5b16
llama : fix order of parameters (#8706)
usage of `aclrtGetMemInfo` is correct:

https://www.hiascend.com/doc_center/source/zh/canncommercial/63RC2/inferapplicationdev/aclcppdevg/aclcppdevg_03_0103.html

Co-authored-by: Judd <foldl@boxvest.com>
2024-07-26 11:38:12 +03:00
Georgi Gerganov
4226a8d10e
llama : fix build + fix fabs compile warnings (#8683)
ggml-ci
2024-07-25 19:57:31 +03:00
Chen Xi
ed67bcb24f
[SYCL] fix multi-gpu issue on sycl (#8554)
---------

Signed-off-by: Chen Xi <xi2chen@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
2024-07-25 19:45:18 +08:00
Georgi Gerganov
eddcb5238b
ggml : add and use ggml_cpu_has_llamafile() (#8664) 2024-07-25 12:37:42 +03:00