3 Commits

Author SHA1 Message Date
Brian
e236528e76
gguf_hash.py: Add sha256 (#8470)
* gguf_hash.py: Add sha256

* gguf_hash.py: rename string UUIDv5 --> uuid

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2024-07-14 16:47:14 +10:00
compilade
3fd62a6b1c
py : type-check all Python scripts with Pyright (#8341)
* py : type-check all Python scripts with Pyright

* server-tests : use trailing slash in openai base_url

* server-tests : add more type annotations

* server-tests : strip "chat" from base_url in oai_chat_completions

* server-tests : model metadata is a dict

* ci : disable pip cache in type-check workflow

The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.

* py : fix new type errors from master branch

* tests : fix test-tokenizer-random.py

Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.

* ci : only show warnings and errors in python type-check

The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
2024-07-07 15:04:39 -04:00
Brian
f7cab35ef9
gguf-hash: model wide and per tensor hashing using xxhash and sha1 (#8048)
CLI to hash GGUF files to detect difference on a per model and per tensor level

The hash type we support is:

- `--xxh64`: use xhash 64bit hash mode (default)
- `--sha1`: use sha1
- `--uuid`: use uuid
- `--sha256`: use sha256

While most POSIX systems already have hash checking programs like sha256sum, it
is designed to check entire files. This is not ideal for our purpose if we want
to check for consistency of the tensor data even if the metadata content of the
gguf KV store has been updated.

This program is designed to hash a gguf tensor payload on a 'per tensor layer'
in addition to a 'entire tensor model' hash. The intent is that the entire
tensor layer can be checked first but if there is any detected inconsistencies,
then the per tensor hash can be used to narrow down the specific tensor layer
that has inconsistencies.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-07 22:58:43 +10:00