Exposes a few attributes demonstrating how to build [singularity](https://docs.sylabs.io/guides/latest/user-guide/)/[apptainer](https://apptainer.org/) and Docker images re-using llama.cpp's Nix expression.
Built locally on `x86_64-linux` with `nix build github:someoneserge/llama.cpp/feat/nix/images#llamaPackages.{docker,docker-min,sif,llama-cpp}` and it's fast and effective.
GitHub does not expose environment and repository variables to PRs coming from forks implies that we've been disabling the Nix CI actions for most PRs.
The `if:` also didn't make much sense, because we can always pull from cachix, and there's no point (albeit no risk either) in pushing cache for the untrusted code.
* server: fallback to chatml
* add new chat template
* server: add AlphaMonarch to test chat template
* server: only check model template if there is no custom tmpl
* remove TODO
* server: health: fix race condition on slots data using tasks queue
* server: health:
* include_slots only if slots_endpoint
* fix compile warning task.target_id not initialized.
This commit adds the `--skip-unknown` option to the convert.py script
and removes the saving of the updated checkpoints to avoid updating
possibly checked out files.
The motivation for this change is that this was done for 1.5
in Commit fc0c8d286a533363a9a663510b62af85ffad58b3 ("llava :
update surgery script to not remove tensors") and makes the examples
more consistent.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
There are couple things in this architecture:
1. Shared input and output embedding parameters.
2. Key length and value length are not derived from `n_embd`.
More information about the models can be found at
https://ai.google.dev/gemma. GGUFs can be downloaded from
https://huggingface.co/google.
* iq4_nl: squash commits for easier rebase
* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels
* iq4_nl: Fix after merging with master
* iq4_nl: another fix after merging with master
* Use IQ4_NL instead of Q4_K when using k-quants is not possible
* Fix typo that makes several tests fail
* It was the ggml_vdotq thing missed inside the brackets
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit contains a suggestion for the README.md in the llava
example. The suggestion adds explicit instructions for how to convert
a llava-1.6 model and run it using llava-cli.
The motivation for this is that having explicit instructions similar to
the 1.5 instructions will make it easier for users to try this out.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* add build support for embedded metal library
* Update Makefile
---------
Co-authored-by: Haoxiang Fei <feihaoxiang@idea.edu.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* support minLength and maxLength in JSON schema grammar converter
* Update examples/json-schema-to-grammar.py
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : embed Metal library source (ggml-metal.metal) into binary
enable by setting WHISPER_EMBED_METAL_LIBRARY
* rename the build option
* rename the preprocessor directive
* generate Metal library embedding assembly on-fly during build process