Commit Graph

195 Commits

Author SHA1 Message Date
Stephan Walter
f9c585f008 Generalize quantize_fns for simpler FP16 handling 2023-07-02 21:33:50 +02:00
Georgi Gerganov
46088f7231 ggml : fix build with OpenBLAS (close #2066) 2023-07-02 09:46:46 +03:00
Qingyou Meng
b1ca8f36a9
ggml : disable GGML_TASK_INIT and GGML_TASK_FINALIZE by default (#1995)
Will not be scheduled unless explicitly enabled.
2023-07-01 18:42:43 +03:00
Erik Scholz
9d23589d63
fix pthreads setaffinity usage on android (#2020) 2023-06-27 19:06:33 +02:00
Georgi Gerganov
d9779021bd
ggml : add support for ChatGLM RoPE 2023-06-27 00:06:51 +03:00
Georgi Gerganov
c824d2e368
ggml : avoid conv 2d kernel round up 2023-06-26 21:03:59 +03:00
zrm
b853d45601
ggml : add NUMA support (#1556)
* detect NUMA systems and pin work threads to nodes (linux)

* disable mmap prefetch/readahead for NUMA systems

* avoid sending finalize op to thread pool if it does nothing

* silence robot

* fix args

* make --numa a param

* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement

* lower synchronization overhead

* statically allocate

* move numa state to g_state

* add description for --numa

* ggml : minor style changes

* ggml : minor style + try fix sanitizer build

* llama : allow to initialize backend with NUMA support

* llama : avoid ggml include in llama-util.h

* ggml : style / formatting

* ggml : fix handling of ops with n_threads > n_tasks > 1

* server : utilize numa parameter

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-26 20:57:59 +03:00
Georgi Gerganov
bd34cdde38
ggml : sync latest ggml (custom operators) 2023-06-25 14:25:08 +03:00
Robyn
5ec8dd5a3c
#1869 Fix null reference errors when training from scratch with CUDA (#1907)
* #1869 Fix null reference errors when training from scratch with CUDA build

Calling ggml_compute_forward when node->src0 was null was causing train-text-from-scratch.exe to terminate unexpectedly.

* ggml : do not dereference src0 if NULL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 20:10:29 +02:00
slaren
f2c754e1c3
ggml : improve ggml_graph_dump_dot, add ggml_format_name (#1978)
* Improve ggml_graph_dump_dot, add ggml_format_name

* add more automatic names to view ops

* fix name of copies
2023-06-24 13:57:18 +03:00
Georgi Gerganov
18b35625c3
ggml : fix bug in LBFGS optimizer (found by ggml tests) 2023-06-19 20:43:30 +03:00
Georgi Gerganov
b97ca431db
ggml : sync latest ggml repo (#1924)
* ggml : sync latest ggml repo

* ggml : remove unused comments

* ggml : asserts
2023-06-19 18:12:33 +03:00
l3utterfly
8596af4277
ggml : fix bug in ggml_compute_forward_add_q_f32 (#1918) 2023-06-18 14:19:16 +03:00
Georgi Gerganov
ce2c7d72e2
metal : handle buffers larger than device's maxBufferLength (#1826)
* metal : handle buffers larger than device's maxBufferLength

* metal : print more verbose device info + handle errors

* metal : fix prints for overlapping views

* metal : minimize view overlap to try to utilize device memory better
2023-06-18 09:09:47 +03:00
Borislav Stanimirov
9cbf50c041
build : fix and ignore MSVC warnings (#1889) 2023-06-16 21:23:53 +03:00
Johannes Gäßler
254a7a7a5f
CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
xaedes
e32089b2c2
train : improved training-from-scratch example (#1652)
* add python wrapper

https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce

* fix decoding error. adds errors=ignore parameter

* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)

* update python bindings

* add text generating baby-llama from scratch example

* fix race condition bug in ggml_compute_forward_diag_mask_f32

* implement ggml_soft_max_back for more performant backward pass of soft_max

avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss

* improve softmax backward pass

go from quadratic runtime to linear runtime by simplifying the formulas

* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build

* improve performance of mul_mat backward pass

avoid transpose by using mul_mat with swapped arguments

* avoid printing too much newlines in baby-llama-text

* activate threading in baby-llama-text

* add ggml_out_prod and use it for mul_mat backward pass for improved performance

performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests

* better weight initialization improves training convergence at start

* better weight initialization improves training convergence at start

* improve ggml_out_prod performance

- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)

* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data

* fix get_samples call, add model tensor names, increase model size, start training samples after newline

* save train trained model to checkpoint and load model to be trained from checkpoint

* use inplace functions where possible

* initialize rng with srand

* use different arguments for input and output checkpoint

* ggml fixes to support backward pass on inplace operations

* remove duplicate include

* fix cross entropy loss

- add target probabilities for each sample which is then used in cross entropy loss

* print used memory before and after optimization

* sample with non-greedy sampling parameters at the end of training

* add cmake target for baby-llama-text

* add ggml_add1_inplace to header

* enable gradient propagation for inplace add1 and scale operations

those functions backward passes don't need the original src0, so they also work when forward is inplace

* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)

also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.

since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.

* use inplace operations in cross_entropy_loss

* fix random weight initialization scale

* add missing default parameters for adam optimizer

* add ggml_opt_context, so that we can properly resume training

otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.

now the optimizer context and all its memory is stored in a separate struct.

* fix bug in llama_sample_token_mirostat_v2

when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.

* add forward function without using cache, for more performant training

during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.

* print suppressed newline tokens as string "\n"

printing too much actual newlines is suppressed to avoid flooding the console.

* store optimizer state in training checkpoint and add learning schedule

persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts

* remove unused functions

* fix bug in get_samples which corrupted training targets

* save checkpoint only when it was trained

* simplify code

* remove trailing whitespace

* simplify backward pass for SQRT

* replace inefficient repeat backward pass with dedicated repeat_back operation

* add ggml_cross_entropy_loss with backward pass for faster training

cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.

* add tests for cross_entropy_loss backward pass

finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues

* use ggml_cross_entropy_loss in text training example

* remove trailing whitespace

* slightly improve how cross entropy loss is compute

btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..

* add llama_get_vocab to get the vocabulary as output parameters

* set default model.type for unknown models with few layers

* add export of training checkpoint to llama compatible model file

* get vocabulary for exporting training checkpoint to llama compatible model file

* implement backward pass of flash attention

* bugfixes for backward pass of flash attention

* test flash attention backward pass

need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.

* add option to train with flash attention and move options to the top of the main function

training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.

flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx

* add train_params and command line option parser

* remove unnecessary comments

* add train params to specify memory size

* remove python bindings

* rename baby-llama-text to train-text-from-scratch

* replace auto parameters in lambda function

* add #include <climits>

* add explicit cast to fix compile error

"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"

* remove trailing whitespace

* add ggml_opt_resume_g which accepts forward and backward cgraphs

* fix formulas in comments

* bug fix for ggml_compute_forward_get_rows_back_f32

the result should be set to zero, not to whatever data is in opt0

* improve training memory usage with scratch buffers

instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.

will compute backward pass for ALL model parameters

* add option to use scratch buffers in training or not

make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.

* ci : disable temporary

* store view offset and permute axes in opt[0] instead of storing it in padding

use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.

* minor : fix compile warnings + minor style changes

* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32

* store view offset like in master branch

* bug fix in forward_batch_wo_cache_flash_attn_train

* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train

data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.

replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.

replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.

* remove unnecessary scratch buffer 0

buf 0 is persistent memory, so we can just disable scratch for this by using buf -1

* avoid creating unnecessary grad tensors

previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.

improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.

* print used training seed

* zero initialize gfbuf and gbbuf

* ci : re-enable workflows + add README for training

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13 22:04:40 +03:00
Kerfuffle
74d4cfa343
Allow "quantizing" to f16 and f32 (#1787)
* Allow "quantizing" to f16 and f32

Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS

Add brief help to the list of quantization types in the quantize tool

Ignore case for quantization type arguments in the quantize tool
2023-06-13 04:23:23 -06:00
Georgi Gerganov
17c10acfb4
ggml : force no_alloc == false when creating opt tensors (close #1699)
This is needed to make operators like ggml_view() be able to store their
parameters in the ggml context's memory and not get discarded when
no_alloc is true
2023-06-10 12:08:15 +03:00
Xingchen Song(宋星辰)
ef3171d162
ggml : workaround for missing _mm256_setr_m128i in GCC < 8 (#1638) 2023-06-10 10:49:40 +03:00
Steven Roussey
b50b570ed9
ggml : fix fprintf warnings (#1720) 2023-06-08 10:12:28 +03:00
Georgi Gerganov
5c64a0952e
k-quants : allow to optionally disable at compile time (#1734)
* k-quants : put behind optional compile flag LLAMA_K_QUANTS

* build : enable k-quants by default
2023-06-07 10:59:52 +03:00
Georgi Gerganov
2a4e41a086
llama : fix compile warnings 2023-06-06 22:41:53 +03:00
Johannes Gäßler
17366df842
Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)
* CUDA multi GPU + scratch

ggml_cuda_compute_forward

Tensor parallelism

ggml_cuda_add

ggml_cuda_rms_norm

ggml_cuda_silu

CUDA scratch buffer

--main-gpu CLI option
2023-06-06 21:33:23 +02:00
Georgi Gerganov
2d43387daf
ggml : fix builds, add ggml-quants-k.o (close #1712, close #1710) 2023-06-06 10:18:03 +03:00
kiltyj
9d0693bce3
metal : use shared buffers between CPU and GPU (#1696)
* Use MTLDevice.newBufferWithBytesNoCopy to share buffers between CPU and GPU

* Page-align buffers used by Metal

* Remove trailing whitespace

* Only import unistd.h for Metal builds

* metal : remove unnecessary copies

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 23:24:04 +03:00
grahameth
efe0507632
ggml : fix internal overflow in ggml_time_us on Windows (#1702)
Co-authored-by: grahameth <->
2023-06-05 23:11:49 +03:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00
Georgi Gerganov
ecb217db4f
llama : Metal inference (#1642)
* mtl : export the LLaMA computation graph

* ci : disable temporary

* mtl : adapt the MNIST example as starter

* mtl : no need for mtl-export tool, add cli arg for main instead

* mtl : export just a small part of the graph for now to make it easier

* mtl : move MSL code into separate file for easy editing

* mtl : initial get_rows_q4_0 kernel

* mtl : confirmed get_rows_q4_0 is working correctly

* mtl : add rms_norm kernel + confirm working

* mtl : add mul kernel + confirm working

* mtl : initial mul_mat Q4 kernel (wrong results)

* mtl : mul_mat fixes (still wrong)

* mtl : another mul_mat Q4 (still does not work)

* mtl : working mul_mat q4

* ggml : fix handling of "view" ops in ggml_graph_import()

* mtl : add rope kernel

* mtl : add reshape and transpose handling

* ggml : store offset as opt arg for ggml_view_xd() operators

* mtl : add cpy kernel + handle view ops

* mtl : confirm f16 x f32 attention mul mat

* mtl : add scale kernel

* mtl : add diag_mask_inf kernel

* mtl : fix soft_max kernel

* ggml : update ggml_nbytes() to handle non-contiguous tensors

* mtl : verify V tensor contents

* mtl : add f32 -> f32 cpy kernel

* mtl : add silu kernel

* mtl : add non-broadcast mul kernel

* mtl : full GPU inference of the computation graph

* mtl : optimize rms_norm and soft_max kernels

* mtl : add f16 mat x f32 vec multiplication kernel

* mtl : fix bug in f16 x f32 mul mat + speed-up computation

* mtl : faster mul_mat_q4_0_f32 kernel

* mtl : fix kernel signature + roll inner loop

* mtl : more threads for rms_norm + better timing

* mtl : remove printfs from inner loop

* mtl : simplify implementation

* mtl : add save/load vocab to ggml file

* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)

* mtl : make it work with main example

Lots of hacks but at least now it generates text

* mtl : preparing for merge

* mtl : clean-up ggml mtl interface + suport scratch / inplace

* mtl : remove temp / debug code

* metal : final refactoring and simplification

* Revert "ci : disable temporary"

This reverts commit 98c267fc77.

* metal : add comments

* metal : clean-up stuff, fix typos

* readme : add Metal instructions

* readme : add example for main
2023-06-04 23:34:30 +03:00
0cc4m
dcb2ed4826
OpenCL: Fix duplication of layers in VRAM and RAM, add GPU mul kernel (#1653)
* Use events instead of clFinish, where possible

* OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel

* Reduce queueing overhead for contiguous tensors by using single mul kernel call

* Adapt to #1612 cl_mem malloc changes

* Reduce code duplication between cuda and opencl branches

* Improve implementation
2023-06-04 08:12:05 +02:00
Georgi Gerganov
7552ac5863
ggml : sync cgraph import / export API 2023-05-29 19:31:44 +03:00
Georgi Gerganov
5d1830b99d
ggml : fix bug in ggml_alibi 2023-05-29 19:30:49 +03:00
apcameron
a6704643b6
ggml : add support for the RISCV architecture (#1616) 2023-05-27 23:03:25 +03:00
Georgi Gerganov
93618031c7
ggml : add ggml_tensor_overhead() 2023-05-27 16:19:56 +03:00
Georgi Gerganov
bdbda1b17a
ggml : sync ggml core (minor additions, e.g. ggml_get_tensor_by_name()) 2023-05-27 12:23:16 +03:00
0cc4m
2e6cd4b025
OpenCL Token Generation Acceleration (#1459)
* Move back to C++ for OpenCL

* Refactor OpenCL code to work more like the CUDA code, add missing functions

* Deduplicate dequant kernels

* Add OpenCL compile options

* Use compile args for preprocessing constants

* Restore default platform + device selection by id behavior

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Henri Vasserman <henv@hot.ee>
2023-05-23 00:33:24 +03:00
Georgi Gerganov
265db9834e
ggml : output 3d sizes in ggml_graph_dump_dot() 2023-05-21 11:56:23 +03:00
Georgi Gerganov
fab49c685e
ggml : update WASM SIMD 2023-05-20 20:00:41 +03:00
Georgi Gerganov
3de84b2606
ggml : add ggml_clamp() (#1539)
* ggml : add ggml_clamp()

* ggml : indentation
2023-05-20 15:34:45 +03:00
Johannes Gäßler
affc76edfd
cuda : loading models directly into VRAM, norm calculation on GPU, broadcasting for ggml_mul (#1483)
* Broadcasting for ggml_mul

* CUDA kernel for ggml_mul, norms in VRAM

* GPU weights not in RAM, direct loading with cuFile

* fixup! GPU weights not in RAM, direct loading with cuFile

* fixup! GPU weights not in RAM, direct loading with cuFile

* define default model path once, sync path with readme (#1366)

* ~7% faster Q5_1 AVX2 code (#1477)

* convert.py: Support models which are stored in a single pytorch_model.bin (#1469)

* Support models in a single pytorch_model.bin

* Remove spurious line with typo

* benchmark-matmul: Print the average of the test results (#1490)

* Remove unused n_parts parameter (#1509)

* Fixes #1511 lambda issue for w64devkit (mingw) (#1513)

* Fix for w64devkit and mingw

* make kv_f16 the default for api users (#1517)

* minor : fix compile warnings

* readme : adds WizardLM to the list of supported models (#1485)

* main : make reverse prompt option act as a stop token in non-interactive mode (#1032)

* Make reverse prompt option act as a stop token in non-interactive scenarios

* Making requested review changes

* Update gpt_params_parse and fix a merge error

* Revert "Update gpt_params_parse and fix a merge error"

This reverts commit 2bb2ff1748.

* Update gpt_params_parse and fix a merge error take 2

* examples : add persistent chat (#1495)

* examples : add persistent chat

* examples : fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* tests : add missing header

* ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)

* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics

* ggml : fix scalar implementation of Q4_1 dot

* llama : fix compile warnings in llama_set_state_data()

* llama : fix name shadowing and C4146 (#1526)

* Fix name shadowing and C4146

* Fix if macros not using defined when required

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Code style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix for mingw (#1462)

* llama : add llama_init_backend() API (close #1527)

* feature : add blis and other BLAS implementation support (#1502)

* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Revert "feature : add blis and other BLAS implementation support (#1502)"

This reverts commit 07e9ace0f9.

* GPU weights not in RAM, direct loading with cuFile

* llama : code style fixes + progress print fix

* ggml : ggml_mul better broadcast support

* cmake : workarounds for cufile when CMake version < 3.25

* gg rebase fixup

* Loop in llama.cpp, fixed progress callback

* Attempt clang-tidy fix

* llama : fix vram size computation

* Add forgotten fclose()

---------

Co-authored-by: András Salamon <ott2@users.noreply.github.com>
Co-authored-by: Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Co-authored-by: Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Co-authored-by: rankaiyx <rankaiyx@rankaiyx.com>
Co-authored-by: Stephan Walter <stephan@walter.name>
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
Co-authored-by: Erik Scholz <Green-Sky@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: David Kennedy <dakennedyd@gmail.com>
Co-authored-by: Jason McCartney <jmac@theroot.org>
Co-authored-by: Evan Jones <evan.q.jones@gmail.com>
Co-authored-by: Maxime <672982+maximegmd@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Zenix <zenixls2@gmail.com>
2023-05-20 15:19:28 +03:00
Maxime
503db28849
llama : fix name shadowing and C4146 (#1526)
* Fix name shadowing and C4146

* Fix if macros not using defined when required

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Code style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-20 10:22:37 +03:00
Georgi Gerganov
4fd3e29297 ggml : fix scalar implementation of Q4_1 dot 2023-05-20 10:13:19 +03:00
Georgi Gerganov
2d5db48371
ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)
* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics
2023-05-19 22:17:18 +03:00
Ilya Kurdyukov
42627421ec
~7% faster Q5_1 AVX2 code (#1477) 2023-05-16 18:36:47 +00:00
xaedes
79b2d5b69d
ggml : alternative fix for race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 (#1454)
* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* remove trailing whitespace

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-14 18:55:02 +03:00
Georgi Gerganov
13c351ad72
ggml : various fixes (#1450)
- `ggml_rope()`
- `ggml_diag_mask_inf()` multi-threaded
- compatibility with scratch buffers
2023-05-14 18:22:50 +03:00
katsu560
60f8c361ca
ggml : add AVX support based on AVX2 code (#1430) 2023-05-14 10:03:51 +00:00
Georgi Gerganov
66841fdb0e
ggml : multi-thread mul and diag_mask ops (#1428) 2023-05-13 16:48:03 +03:00
Johannes Gäßler
905d87b70a
ggml : GPU-accelerated token generation (#1412)
* CUDA kernel for q4_0 dequant. + mat. vec. mult.

* Added q4_1 via template

* Added missing __syncthreads();

* --gpu_layers -> --gpu-layers

* Shorter dequantize_mul_mat_vec line

* q5_0 dequantize_mul_mat kernel

* More readable dequantize_mul_mat_vec logic

* dequantize_mul_mat_vec kernels for q5_1, q8_0, f16

* llama : offload "output" tensor to GPU too + coding style fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 16:38:36 +03:00
xaedes
f954edda93
ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360)
* implement 8 of 14 missing backward pass operations used by llama

- GGML_OP_ADD_AT
- GGML_OP_CPY
- GGML_OP_MUL_MAT (src0.grad)
- GGML_OP_PERMUTE
- GGML_OP_RESHAPE
- GGML_OP_SCALE
- GGML_OP_TRANSPOSE
- GGML_OP_VIEW

implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW.

this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset).
the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0.

still missing backward passes for llama:

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_ROPE
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

* implement 5 of 6 missing backward pass operations used by llama

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK

GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX
GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1.

GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know...

GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF.

Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants.
staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and
functions with "_inplace" are added which are inplace.
in llama we need to call the inplace variants so that it is implemented as before.
for llama backward pass we need to use the non-inplace variants.

still not completely implemented backward passes for llama:

- GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK
- GGML_OP_GET_ROWS: only necessary for tokenizer

* norm & rms_norm can not be threaded:

after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees.

* remove already resolved TODO

* implement backward pass of ggml_rope and ggml_rope_back

* implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back

* add test-grad0.c

* use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console

* test both gradients of mul_mat

* disable graph dot export as it floods console

* bug fixes for silu_back

* successfully test silu backward

* bug fix for scale backward pass

use sum instead of mean for gradient of scalar scale parameter

* successfully test scale backward

* improve performance of sum backward pass

use add1(x,y) instead of add(x,repeat(y,x))

* improve performance of sqr backward pass

use scale(x,y) instead of mul(x,repeat(y,x))

* successfully test rope backward

* bug fix for cpy backward pass

* successfully test cpy backward

* bug fix for reshape backward pass

* successfully test reshape backward

* add test-opt.c

this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c

* correctly implement softmax backward pass using new operation ggml_diag

ggml_diag constructs diagonal matrices with entries.
ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d]

* successfully test soft_max backward

* align shape annotations

* add shape annotations for llama

* de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type.

with this we can duplicate tensor of any typ as long as they are contiguous.

* fix ggml_compute_forward_dup_same_cont for when nelements < nthreads

when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy

* bug fix for add_at forward

required for view backward pass

src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function.

* successfully test view backward

* minor code format improvement

* fix ggml_forward_add functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32.

* fix ggml_forward_add1 functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32.

* test-grad0.c : add print_elements to help with debugging

* successfully test permute backward

* some minor test-grad0 fixes

* fix sub, mul and div functions to work correctly with transposed tensors

uses the same logic as in add

* implement ggml_cont backward pass

* successfully test transpose backward and permute for all permutations

also test sub, mul and div up to max n_dims

* test-grad0.c add TODO for view_2d and view_3d

add_at (required for view backward pass) is a bit tricky for n_dims > 1.

* fix comments

* successfully test diag_mask_inf and diag_mask_zero backward

* test-grad0 : fix test for div

nargs and ndims was swapped, corrupting the stack

* fix diag_mask to work with non-inplace input

* move dup call into the actual add_at functions

* fix get rows backward pass

* successfully test get_rows backward

* fix view backward pass

add nb parameters to add_at like in view.
together with offset they define how to view dst and src0 during the add_at operation.

* successfully test backward pass of view_1d, view_2d and view_3d

* fix backward pass for rms_norm

I would have used formulas from other frameworks, but they differed so I could not decide which is correct.
Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification.

* successfully test backward pass of rms_norm

some tests may fail when gradients are large.
could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds.
when looking at the values the "failed" tests look actually ok. for example:

rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324

it is due to the test logic in check_gradients that they fail.

* add todos for llama backward pass

- implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required)
- repeat is not yet tested and looks like it only works for single element src0 inputs.

* add operation ggml_sum_rows

ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d]

* add missing GGML_OP_SUM_ROWS

* fix backward pass for repeat

requires ggml_sum_rows

* successfully test backward pass of repeat

* update quantization types in switch-case of add_at and add1

* add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.

had to increase maximum number of optimization parameters to train from scratch.

* fix softmax in baby-llama example

* switching from training with adam to lbfgs produces much better results in the baby-llama example

* train with two examples, creating new tensors each time..

* fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt

when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed.
so we need to keep the original gradients and make dups for opt

* train on multiple examples, generate & print tokens with trained model afterwards

ctx0 for evaluation and optimization is renewed for each sample

* add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d

* fix soft_max backward pass for input->ne[1] != 1

* add ggml_log operation necessary for cross entropy loss

* add test for ggml_log gradients

* implement backward pass for ggml_sum_rows, necessary for cross entropy loss

* implement ggml_repeat support for rank > 2 tensors

* add test for ggml_sum_rows gradients

* fix training get_example_targets

predict the next token, not the current token!

* add square_error_loss and cross_entropy_loss functions

* optimize loss over multiple samples

this increases computation graph, need parallel batched forward for more efficiency.

* fix backward pass for add_at and change arguments to have same order as in view

* add ggml_set(ctx, a, b) to set b in view of a and return modified a

necessary to set values into kv_self cache and properly propagate the gradients

* fix kv_self gradients for training

use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients

* replace inplace operations for training with copying operations to allow gradient propagation

* add GGML_ASSERT to catch ggml_rope and back value errors

* add trainable lora-only model with all big matrices C split into A,B with A*B=C

this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices.

training this instead of the normal model resulted in much worse results though...

* vastly improve training results

instead of logit targets 0 and 1 use -1 and +1.

* shorten code using a variable

* change name of GGML_OP_ADD_AT to GGML_OP_ACC

* smaller default values for baby llama model parameters

* update static assert of GGML_OP_COUNT

* remove shape annotations in llama_eval_internal

* revert disabling of threading for rms_norm and norm

* rename print functions in baby-llama example

* fix call to ggml_set_name

* add missing include for strcmp, etc

* remove trailing whitespace

* reduce number of test-grad0 iterations

avoid exceeding timeout of automated tests

* remove busy loop that was used as sleep for slower sinus wave generation

* disable slow tests grad0 and opt to avoid exceeding timeouts

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* ggml : fix compiler warnings + cosmetic changes

* ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* ggml : swap vDSP_vsub args as per documentation

* add parallel batched forward function for baby-llama training

* cleanup code for batched training

* remove trailing whitespace

* minor : fix compiler warnings + indentation style

* ggml : fix null ptr deref in backward pass

* ggml : remove Q4_2 remnants

* ggml : fix clang-tidy warnings

* baby-llama : couple of clang-tidy warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 15:56:40 +03:00