1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-23 09:59:18 +01:00
Commit Graph

3881 Commits

Author SHA1 Message Date
Georgi Gerganov
df270ef745
llama : refactor sampling v2 ()
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
2024-09-07 15:16:19 +03:00
Xuan Son Nguyen
947538acb8
ggml : fix missing cpu_set_t on emscripten ()
* ggml : fix missing cpu_set_t on emscripten

* better version

* bring back android part
2024-09-07 12:01:34 +02:00
slaren
6c89eb0b47
ci : disable rocm image creation () 2024-09-07 10:48:54 +03:00
Xuan Son Nguyen
9b2c24c099
server : simplify state machine for slot ()
* server : simplify state machine for slot

* add SLOT_STATE_DONE_PROMPT

* pop_deferred_task

* add missing notify_one

* fix passkey test

* metrics : add n_busy_slots_per_decode

* fix test step

* add test

* maybe fix AddressSanitizer?

* fix deque ?

* missing lock

* pop_deferred_task: also notify

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-06 23:21:29 +02:00
Aarni Koskela
134bc38ecf
llama-bench : log benchmark progress ()
* llama-bench : add optional progress messages
2024-09-06 23:03:01 +02:00
Aarni Koskela
815b1fb20a
batched-bench : add --output-format jsonl option ()
`--output-format` is modeled after `llama-bench`'s options
2024-09-06 17:59:58 +02:00
Changyeon Kim
409dc4f8bb
ggml : fix build break for the vulkan-debug ()
- windows build : Ok.
- linux build : Ok.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
2024-09-06 15:54:50 +03:00
Xuan Son Nguyen
4a1411b4f1
server : fix missing lock () 2024-09-06 14:06:04 +02:00
Markus Tavenrath
8ebe8ddebd
Improve Vulkan shader build system ()
* Improve Vulkan shader builds system

- Add dependency to vulkan-shaders-gen to rebuild shaders when changing the shader compilation utility.
- Add option to generate debug info for Vulkan shaders to provide shader source to Vulkan shader profiling tools

* remove not required self dependency
2024-09-06 08:56:17 +02:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 ()
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
awatuna
32b2ec88bc
Update build.yml ()
build rpc-server for windows cuda
2024-09-06 00:34:36 +02:00
Michael Podvitskiy
1031771faa
CMake fix: host for msvc compiler can only be x86 or x64 () 2024-09-06 00:14:12 +02:00
slaren
4db04784f9
cuda : fix defrag with quantized KV () 2024-09-05 11:13:11 +02:00
slaren
bdf314f38a
llama-bench : fix NUL terminators in CPU name () 2024-09-05 02:19:39 +02:00
Srihari-mcw
581c305186
ggml : AVX2 support for Q4_0_8_8 ()
* Add AVX2 based implementations for quantize_q8_0_4x8, ggml_gemv_q4_0_8x8_q8_0 and ggml_gemm_q4_0_8x8_q8_0 functions

* Update code to fix issues occuring due to non alignment of elements to be processed as multiple of 16 in MSVC

* Update comments and indentation

* Make updates to reduce number of load instructions
2024-09-04 19:51:22 +03:00
Ouadie EL FAROUKI
5910ea9427
[SYCL] Fix DMMV dequantization ()
Fixed dmmv dequant for ncols== GGML_SYCL_DMMV_X
2024-09-04 16:26:33 +01:00
杨朱 · Kiki
c8671ae282
Fix broken links in docker.md () 2024-09-04 13:45:28 +02:00
Radoslav Gerganov
82e3b03c11
rpc : make RPC servers come first in the device list ()
* rpc : make RPC servers come first in the device list

* rpc : disable options for non-RPC builds

* rpc : rpc_count always zero for non-RPC builds
2024-09-04 11:08:32 +03:00
Pascal Patry
9379d3cc17
readme : rename result_format to response_format () 2024-09-04 09:45:40 +03:00
Georgi Gerganov
7605ae7daf
flake.lock: Update ()
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/8471fe90ad337a8074e957b69ca4d0089218391d?narHash=sha256-XOQkdLafnb/p9ij77byFQjDf5m5QYl9b2REiVClC%2Bx4%3D' (2024-08-01)
  → 'github:hercules-ci/flake-parts/af510d4a62d071ea13925ce41c95e3dec816c01d?narHash=sha256-ODYRm8zHfLTH3soTFWE452ydPYz2iTvr9T8ftDMUQ3E%3D' (2024-08-30)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/c374d94f1536013ca8e92341b540eba4c22f9c62?narHash=sha256-Z/ELQhrSd7bMzTO8r7NZgi9g5emh%2BaRKoCdaAv5fiO0%3D' (2024-08-21)
  → 'github:NixOS/nixpkgs/71e91c409d1e654808b2621f28a327acfdad8dc2?narHash=sha256-GnR7/ibgIH1vhoy8cYdmXE6iyZqKqFxQSVkFgosBh6w%3D' (2024-08-28)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-09-03 16:36:43 -07:00
Aarni Koskela
8962422b1c
llama-bench : add JSONL (NDJSON) output mode ()
* llama-bench : add JSONL (NDJSON) output mode

* llama-bench : update usage docs
2024-09-03 19:58:54 +02:00
Georgi Gerganov
b69a480af4
readme : refactor API section + remove old hot topics 2024-09-03 10:00:36 +03:00
Xuan Son Nguyen
48baa61ecc
server : test script : add timeout for all requests () 2024-09-02 22:08:38 +02:00
Zhenwei Jin
f1485161e5
src: make tail invalid when kv cell is intersection for mamba () 2024-09-02 13:53:23 -04:00
slaren
048de848ee
docker : fix missing binaries in full-cuda image () 2024-09-02 18:11:13 +02:00
yuri@FreeBSD
f771d064a9
ggml : add pthread includes on FreeBSD () 2024-09-02 18:25:30 +03:00
Xuan Son Nguyen
6e7d133a5f
server : refactor multitask handling ()
* server : remove multitask from server_task

* refactor completions handler

* fix embeddings

* use res_ok everywhere

* small change for handle_slots_action

* use unordered_set everywhere

* (try) fix test

* no more "mutable" lambda

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* use deque

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-02 17:11:51 +02:00
Guoliang Hua
b60074f1c2
llama-cli : remove duplicated log message () 2024-09-02 15:36:43 +03:00
Tushar
9c1ba55733
build(nix): Package gguf-py ()
* style: format with nixfmt/rfc101-style

* build(nix): Package gguf-py

* build(nix): Refactor to new scope for gguf-py

* build(nix): Exclude gguf-py from devShells

* build(nix): Refactor gguf-py derivation to take in exact deps

* build(nix): Enable pytestCheckHook and pythonImportsCheck for gguf-py

* build(python): Package python scripts with pyproject.toml

* chore: Cleanup

* dev(nix): Break up python/C devShells

* build(python): Relax pytorch version constraint

Nix has an older version

* chore: Move cmake to nativeBuildInputs for devShell

* fmt: Reconcile formatting with rebase

* style: nix fmt

* cleanup: Remove unncessary __init__.py

* chore: Suggestions from review

- Filter out non-source files from llama-scripts flake derivation
- Clean up unused closure
- Remove scripts devShell

* revert: Bad changes

* dev: Simplify devShells, restore the -extra devShell

* build(nix): Add pyyaml for gguf-py

* chore: Remove some unused bindings

* dev: Add tiktoken to -extra devShells
2024-09-02 14:21:01 +03:00
Georgi Gerganov
c6d4cb4655
llama : minor style 2024-09-02 11:52:37 +03:00
Molly Sophia
8f1d81a0b6
llama : support RWKV v6 models ()
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 17:38:17 +03:00
Echo Nolan
a47667cff4 nix: fix CUDA build - replace deprecated autoAddOpenGLRunpathHook
The CUDA nix build broke when we updated nixpkgs in
8cd1bcfd3f. As far as I can tell all
that happened is cudaPackages.autoAddOpenGLRunpathHook got moved to
pkgs.autoAddDriverRunpath. This commit fixes it.
2024-08-31 08:44:21 +00:00
Srihari-mcw
ea5d7478b1
sgemm : improved Q4_0 and Q8_0 performance via 4xN and Mx4 gemm () 2024-08-31 11:20:35 +03:00
Daniel Bevenius
49271efbaf
llama : fix typo in xcda_array_view comment [no ci] () 2024-08-31 10:50:22 +03:00
Sutou Kouhei
0ab30f8d82
llama : fix llama_split_mode enum values in main_gpu document ()
LLAMA_SPLIT_* were renamed to LLAMA_SPLIT_MODE_* in .
2024-08-30 20:08:10 +02:00
蕭澧邦
cddae4884c
Correct typo run_llama2.sh > run-llama2.sh () 2024-08-30 22:10:01 +10:00
tc-mb
7ea8d80d53
llava : the function "clip" should be int () 2024-08-30 07:21:57 +02:00
Faisal Zaghloul
42c76d1358
Threadpool: take 2 ()
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-30 01:20:53 +02:00
Jan Boon
9f7d4bcf5c server : fix crash when error handler dumps invalid utf-8 json () 2024-08-30 07:15:26 +08:00
Georgi Gerganov
1d1ccce676
flake.lock: Update ()
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/c3aa7b8938b17aebd2deecf7be0636000d62a2b9?narHash=sha256-med8%2B5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c%3D' (2024-08-14)
  → 'github:NixOS/nixpkgs/c374d94f1536013ca8e92341b540eba4c22f9c62?narHash=sha256-Z/ELQhrSd7bMzTO8r7NZgi9g5emh%2BaRKoCdaAv5fiO0%3D' (2024-08-21)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-08-28 21:28:14 -07:00
slaren
9fe94ccac9
docker : build images only once () 2024-08-28 17:28:00 +02:00
slaren
66b039a501
docker : update CUDA images () 2024-08-28 13:20:36 +02:00
Georgi Gerganov
20f1789dfb vulkan : fix build ()
ggml-ci
2024-08-27 22:41:27 +03:00
Georgi Gerganov
231cff5f6f sync : ggml 2024-08-27 22:41:27 +03:00
Xie Yanbo
3246fe84d7
Fix minicpm example directory () 2024-08-27 14:33:08 +02:00
compilade
78eb487bb0
llama : fix qs.n_attention_wv for DeepSeek-V2 () 2024-08-27 13:09:23 +03:00
Xuan Son Nguyen
a77feb5d71
server : add some missing env variables ()
* server : add some missing env variables

* add LLAMA_ARG_HOST to server dockerfile

* also add LLAMA_ARG_CONT_BATCHING
2024-08-27 11:07:01 +02:00
CausalLM
2e59d61c1b
llama : fix ChatGLM4 wrong shape ()
This should fix THUDM/glm-4-9b-chat-1m and CausalLM/miniG
2024-08-27 09:58:22 +03:00
Carsten Kragelund Jørgensen
75e1dbbaab
llama : fix llama3.1 rope_freqs not respecting custom head_dim ()
* fix: llama3.1 rope_freqs not respecting custom head_dim

* fix: use potential head_dim for Exaone
2024-08-27 09:53:40 +03:00
arch-btw
ad76569f8e
common : Update stb_image.h to latest version ()
* Update stb_image.h to latest version

Fixes https://github.com/ggerganov/llama.cpp/issues/7431

* Update .ecrc
2024-08-27 08:58:50 +03:00