116 Commits

Author SHA1 Message Date
Shankar
ecd5d6b65b
llama: remove redundant loop when constructing ubatch (#9574) 2024-09-22 04:30:34 +02:00
Daniel Bevenius
6443ddd985
llama : use reserve/emplace_back in sampler_sample (#9534)
This commit updates the llama_sampler_sample function to use reserve and
emplace_back for the vector of llama_token_data structs.

The motivation for this change is to avoid the creation of n_vocab
default-constructed llama_token_data structs which are then
immediately overwritten.
2024-09-18 14:42:36 +03:00
Michael Podvitskiy
8344ef58f8
llama : fix n_vocab init for 'no_vocab' case (#9511)
* llama: fixed n_vocab for `no_vocab` models

* llama: updated error output for `llama_decode_internal` and `llama_encode_internal`

* llama: log warning if there's no vocab_size in metadata

* llama: correct vocab size for logging

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-17 13:18:22 +03:00
Yuri Khrustalev
503147a9f9
unicode : add <algorithm> (#9508) 2024-09-17 09:51:15 +03:00
Gabe Goodhart
0d2ec43833
llama : support IBM Granite architecture (#9412)
* feat(gguf-py): Add Granite model and params to gguf-py

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add registration and param setup for Granite

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Add config parsing for Granite multiplier params

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): First pass at full port of granite deviations from llama

Something is still not working right since the results are mostly terrible,
but on occasion it's producing relevant results at this point, so
_something_ is working.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Determine granite language 3b instruct by vocab size

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel

The defaults in LlamaModel are needed for Granite as well

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Switch Granite param names to use _scale for consistency

Other scalar multipliers are called *_scale, so this provides a more
consistent naming convention.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale

The transformers names with _multiplier will now be converted to the _scale
equivalent during conversion.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-09-17 09:44:58 +03:00
Michael Podvitskiy
37f3a3810e
llama : add llama_n_head() (#9512) 2024-09-17 09:23:30 +03:00
Daniel Bevenius
acb2c32c33
llama : rename n_embed to n_embd in rwkv6_time_mix (#9504)
This commit renames n_embed to n_embd in llm_build_rwkv6_time_mix.

The motivation for this change is consistency with the other rwkv6
functions like build_rwkv6 (and other parts of the code base).
2024-09-16 14:07:13 +03:00
Shane A
0aadac10c7
llama : support OLMoE (#9462) 2024-09-16 09:47:37 +03:00
CarryFun
95ca85168b
llama : support MiniCPM3 (#9322)
Co-authored-by: 范睿凯 <fanruikai@modelbest.cn>
2024-09-16 09:45:20 +03:00
Georgi Gerganov
6262d13e0b
common : reimplement logging (#9418)
https://github.com/ggerganov/llama.cpp/pull/9418
2024-09-15 20:46:12 +03:00
Daniel Bevenius
befaf1197f
llama : make cell_id const in inp_s_mask block (#9470)
This commit makes the cell_id variable const in the inp_s_mask block.

The motivation for this change is consistency with the code in the
inp_s_copy block.
2024-09-14 10:50:12 +03:00
Georgi Gerganov
0abc6a2c25
llama : llama_perf + option to disable timings during decode (#9355)
* llama : llama_perf + option to disable timings during decode

ggml-ci

* common : add llama_arg

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* perf : separate functions in the API

ggml-ci

* perf : safer pointer handling + naming update

ggml-ci

* minor : better local var name

* perf : abort on invalid sampler pointer

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-09-13 09:53:38 +03:00
Gilad S.
bd35cb0ae3
feat: remove a sampler from a chain (#9445)
* feat: remove a sampler from a chain

* fix: return removed sampler

* fix: safer casting
2024-09-13 03:54:49 +02:00
Dou Xinpeng
e6b7801bd1
cann: Add host buffer type for Ascend NPU (#9406)
* feat: Add host buffer type for Ascend NPU(CANN backend)

* fix some checking errors

* Add a few comments
2024-09-12 19:46:43 +08:00
Ahmad Tameem
2b00fa7997
riscv : modify Makefile and add a RISCV_VECT to print log info (#9442)
- Added ggml_cpu_has_riscv_v() in GGML to print system info in log
- Modified Makefile to only use flag when cross compiling for RISC-V
2024-09-12 14:24:31 +03:00
Georgi Gerganov
d6a04f872d
ggml : hide ggml_object, ggml_cgraph, ggml_hash_set (#9408)
* ggml : hide ggml_object, ggml_cgraph, ggml_hash_set

ggml-ci

* ggml : add ggml-impl.h to backends

* ggml : fix compiler warnings

ggml-ci

* ggml : add assert upon adding nodes
2024-09-12 14:23:49 +03:00
slaren
1b28061400
llama : skip token bounds check when evaluating embeddings (#9437) 2024-09-11 17:52:13 +02:00
slaren
49006c67b4
llama : move random seed generation to the samplers (#9398)
* llama_sampler_penalties : clamp penalty_last_n to zero
2024-09-10 18:04:25 +02:00
Daniel Bevenius
83008b7cfe
llama : update llm_build_copy_mask_state comment [no ci] (#9385)
This commit updates the comment, which seems to contain a typo or be an
outdated comment, in the copy_mask_state function changing the variable
n_rs to n_kv.

I believe this change is correct and what the comment wants to
convey is to copy the states that are not going to be used in the
upcoming processing, which are the tokens states from n_seqs up to
the number of possible token states n_kv.
2024-09-10 10:03:21 +03:00
Molly Sophia
0b4ac75772
RWKV v6: Add time_mix_decay_w1/w2 in quant exclusion list (#9387)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-10 10:02:30 +03:00
slaren
5fb5e24811
llama : minor sampling refactor (2) (#9386) 2024-09-09 17:10:46 +02:00
slaren
19f4a7b296
llama : refactor samplers internal implementation (#9370) 2024-09-08 15:52:07 +02:00
slaren
eae597182c
llama : sanitize tokens in the upper bound (#9359) 2024-09-08 12:41:51 +02:00
Kevin Gibbons
fbb7fcffbc
llama : set attrs of mislabelled EOT/EOM tokens (#9348) 2024-09-08 08:51:00 +03:00
Georgi Gerganov
f12295b8a9
llama : fix empty ring buffer push (#9358) 2024-09-08 00:33:33 +03:00
Georgi Gerganov
faf69d4237
llama : sanitize invalid tokens (#9357)
* common : do not add null tokens during warmup

ggml-ci

* llama : check that the input tokens are valid

ggml-ci

* tests : fix batch size of bert model

ggml-ci
2024-09-08 00:33:13 +03:00
Georgi Gerganov
df270ef745
llama : refactor sampling v2 (#9294)
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
2024-09-07 15:16:19 +03:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
Radoslav Gerganov
82e3b03c11
rpc : make RPC servers come first in the device list (#9296)
* rpc : make RPC servers come first in the device list

* rpc : disable options for non-RPC builds

* rpc : rpc_count always zero for non-RPC builds
2024-09-04 11:08:32 +03:00
Zhenwei Jin
f1485161e5
src: make tail invalid when kv cell is intersection for mamba (#9249) 2024-09-02 13:53:23 -04:00
Georgi Gerganov
c6d4cb4655
llama : minor style 2024-09-02 11:52:37 +03:00
Molly Sophia
8f1d81a0b6
llama : support RWKV v6 models (#8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 17:38:17 +03:00
Daniel Bevenius
49271efbaf
llama : fix typo in xcda_array_view comment [no ci] (#9132) 2024-08-31 10:50:22 +03:00
Faisal Zaghloul
42c76d1358
Threadpool: take 2 (#8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-30 01:20:53 +02:00
compilade
78eb487bb0
llama : fix qs.n_attention_wv for DeepSeek-V2 (#9156) 2024-08-27 13:09:23 +03:00
CausalLM
2e59d61c1b
llama : fix ChatGLM4 wrong shape (#9194)
This should fix THUDM/glm-4-9b-chat-1m and CausalLM/miniG
2024-08-27 09:58:22 +03:00
Carsten Kragelund Jørgensen
75e1dbbaab
llama : fix llama3.1 rope_freqs not respecting custom head_dim (#9141)
* fix: llama3.1 rope_freqs not respecting custom head_dim

* fix: use potential head_dim for Exaone
2024-08-27 09:53:40 +03:00
Justine Tunney
436787f170
llama : fix time complexity of string replacement (#9163)
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
2024-08-26 09:09:53 +03:00
Johannes Gäßler
f91fc5639b
CUDA: fix Gemma 2 numerical issues for FA (#9166) 2024-08-25 22:11:48 +02:00
Johannes Gäßler
e11bd856d5
CPU/CUDA: Gemma 2 FlashAttention support (#8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-24 21:34:59 +02:00
piDack
a07c32ea54
llama : use F32 precision in GLM4 attention and no FA (#9130) 2024-08-23 10:27:17 +03:00
compilade
a1631e53f6
llama : simplify Mamba with advanced batch splits (#8526)
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 17:58:11 -04:00
Younes Belkada
b40eb84895
llama : support for falcon-mamba architecture (#9074)
* feat: initial support for llama.cpp

* fix: lint

* refactor: better refactor

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix: address comments

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* fix: add more cleanup and harmonization

* fix: lint

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* fix: change name

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

* add in operator

* fix: add `dt_b_c_rms` in `llm_load_print_meta`

* fix: correct printf format for bool

* fix: correct print format

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama : quantize more Mamba tensors

* llama : use f16 as the fallback of fallback quant types

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-21 11:06:36 +03:00
Daniel Bevenius
8455340b87
llama : std::move llm_bigram_bpe from work_queue (#9062)
* llama : std::move llm_bigram_bpe from work_queue

This commit updates the retrieval of llm_bigram_bpe objects from
work_queue.top() by using std::move.

The motivation for this is to avoid the copying of the std::string
`text` member of the llm_bigram_bpe struct.

* squash! llama : std::move llm_bigram_bpe from work_queue

Introduced a MovablePriorityQueue class to allow moving elements
out of the priority queue for llm_bigram_bpe.

* squash! llama : std::move llm_bigram_bpe from work_queue

Rename MovablePriorityQueue to lama_priority_queue.

* squash! llama : std::move llm_bigram_bpe from work_queue

Rename lama_priority_queue -> llama_priority_queue.
2024-08-21 10:32:58 +03:00
Yoshi Suhara
2fb9267887
Fix incorrect use of ctx_split for bias tensors (#9063) 2024-08-17 15:34:21 +02:00
Minsoo Cheong
c679e0cb5c
llama : add EXAONE model support (#9025)
* add exaone model support

* add chat template

* fix whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add ftype

* add exaone pre-tokenizer in `llama-vocab.cpp`

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* fix lint

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* add `EXAONE` to supported models in `README.md`

* fix space

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
2024-08-16 09:35:18 +03:00
Yoshi Suhara
2a24c8caa6
Add Nemotron/Minitron GGUF Conversion & Inference Support (#8922)
* Add nemotron GGUF conversion & inference support

* Fix formatting issues

* Remove unnecessary write_tensors()

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Address comments by @compilade

* Replace ggml_mul_mat()->llm_build_lora_mm()

* Remove mutable variable

* Use  for bias tensors

* Cover corner case for role_scaling not in config.json

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-16 04:23:33 +02:00
Zhenwei Jin
4af8420afb
common : remove duplicate function llama_should_add_bos_token (#8778) 2024-08-15 10:23:23 +03:00
Esko Toivonen
6bda7ce6c3
llama : add pre-tokenizer regexes for BLOOM and gpt3-finnish (#8850) 2024-08-15 10:17:12 +03:00
Nico Bosshard
0fd93cdef5
llama : model-based max number of graph nodes calculation (#8970)
* llama : model-based max number of graph nodes calculation

* Update src/llama.cpp

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-12 17:13:59 +02:00