67 Commits

Author SHA1 Message Date
Georgi Gerganov
574406dc7e
ggml : add Q5_0 and Q5_1 quantization (#1187)
* ggml : add Q5_0 quantization (cuBLAS only)

* ggml : fix Q5_0 qh -> uint32_t

* ggml : fix q5_0 histogram stats

* ggml : q5_0 scalar dot product

* ggml : q5_0 ARM NEON dot

* ggml : q5_0 more efficient ARM NEON using uint64_t masks

* ggml : rename Q5_0 -> Q5_1

* ggml : adding Q5_0 mode

* quantize : add Q5_0 and Q5_1 to map

* ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195)

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-26 23:14:13 +03:00
Ásgeir Bjarni Ingvarsson
87a6f846d3
Allow setting the rng seed after initialization. (#1184)
The llama_set_state_data function restores the rng state to what it
was at the time llama_copy_state_data was called. But users may want
to restore the state and proceed with a different seed.
2023-04-26 22:08:43 +02:00
Georgi Gerganov
7a32fcb3b2
ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1)

* tests : fix test-quantize-fns

* ggml : finalize Q8_0 implementation

* ggml : use q4_0_q8_0 and q4_2_q8_0

* ggml : fix Q8_0 dot product bug (ARM)

* ggml : Q8_0 unroll x2

* ggml : fix bug - using wrong block type

* ggml : extend quantize_fns_t with "vec_dot_type"

* ggml : fix Q8_0 to use 255 values out of 256

* ggml : fix assert using wrong QK4_2 instead of QK4_3
2023-04-25 23:40:51 +03:00
Georgi Gerganov
957c8ae21d
llama : increase scratch buffer size for 65B (ref #1152)
Temporary solution
2023-04-24 18:47:30 +03:00
Georgi Gerganov
c4fe84fb0d
llama : refactor get / set state + remove redundant kv cache API (#1143) 2023-04-24 07:40:02 +03:00
Georgi Gerganov
e4422e299c
ggml : better PERF prints + support "LLAMA_PERF=1 make" 2023-04-23 18:15:39 +03:00
Stephan Walter
c50b628810
Fix CI: ARM NEON, quantization unit tests, editorconfig (#1122) 2023-04-22 10:54:13 +00:00
Georgi Gerganov
872c365a91 ggml : fix AVX build + update to new Q8_0 format 2023-04-22 11:08:12 +03:00
xaedes
b6e7f9b09e
llama : add api for getting/setting the complete state: rng, logits, embedding and kv_cache (#1105)
* reserve correct size for logits

* add functions to get and set the whole llama state:

including rng, logits, embedding and kv_cache

* remove unused variables

* remove trailing whitespace

* fix comment
2023-04-22 09:21:32 +03:00
xaedes
8687c1f258
llama : remember and restore kv cache data pointers (#1104)
because their value is stored in buf and overwritten by memcpy
2023-04-21 18:25:21 +03:00
Georgi Gerganov
d40fded93e
llama : fix comment for "output.weight" tensor 2023-04-21 10:24:02 +03:00
Georgi Gerganov
12b5900dbc
ggml : sync ggml (add GPT-NeoX RoPE implementation) 2023-04-20 23:32:59 +03:00
Kawrakow
38de86a711
llama : multi-threaded quantization (#1075)
* Multi-threading quantization.

Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.

* Multi-threading for quantize-stats

It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.

* Reviewer comments

* Avoiding compiler confusion

After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.

* Still fighting with lambda captures in MSVC

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-20 20:42:27 +03:00
Georgi Gerganov
e0305ead3a
ggml : add Q4_3 quantization (#1082) 2023-04-20 20:35:53 +03:00
slaren
8944a13296
Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00
Georgi Gerganov
77a73403ca
ggml : add new Q4_2 quantization (ARM only) (#1046)
* ggml : Q4_2 ARM

* ggml : add ggml_is_quantized()

* llama : update llama_type_name() with Q4_2 entry

* ggml : speed-up q4_2

- 4 threads: ~100ms -> ~90ms
- 8 threads:  ~55ms -> ~50ms

* ggml : optimize q4_2 using vmlaq_n_f32 + vmulq_n_f32
2023-04-18 23:54:57 +03:00
slaren
315a95a4d3
Add LoRA support (#820) 2023-04-17 17:28:55 +02:00
Arik Poznanski
efd05648c8
llama : well-defined static initialization of complex objects (#927)
* Replaced static initialization of complex objects with a initialization on first use. This prevents an undefined behavior on program run, for example, crash in Release build, works in Debug build

* replaced use of auto with exact type to avoid using -std=c++14

* Made the assessors functions for static maps be static const
2023-04-17 17:41:53 +03:00
Ivan Komarov
f266259ad9
Speedup the AVX-512 implementation of ggml_vec_dot_q4_0() (#933) 2023-04-17 15:10:57 +02:00
Georgi Gerganov
3173a62eb9
stdout : vertical align outputs for better readibility 2023-04-16 13:59:27 +03:00
nanahi
2d3481c721
Fix msys2 build error and warnings (#1009) 2023-04-16 11:13:42 +02:00
Pavol Rusnak
c56b715269
Expose type name from ggml (#970)
Avoid duplication of type names in utils

Co-authored-by: Håkon H. Hitland <haakon@likedan.net>
2023-04-14 20:05:37 +02:00
Georgi Gerganov
9190e8eac8
llama : merge llama_internal.h into llama.h
Hide it behind an #ifdef
2023-04-13 18:04:45 +03:00
Stephan Walter
e7f6997f89
Don't crash on ftype (formerly f16) == 4 (#917) 2023-04-12 15:06:16 +00:00
Stephan Walter
3e6e70d8e8
Add enum llama_ftype, sync ggml_type to model files (#709) 2023-04-11 15:03:51 +00:00
comex
2663d2c678
Windows fixes (#890)
Mostly for msys2 and mingw64 builds, which are different from each other
and different from standard Visual Studio builds.  Isn't Windows fun?

- Define _GNU_SOURCE in more files (it's already used in ggml.c for
  Linux's sake).

- Don't use PrefetchVirtualMemory if not building for Windows 8 or later
  (mingw64 doesn't by default).  But warn the user about this situation
  since it's probably not intended.

- Check for NOMINMAX already being defined, which it is on mingw64.

- Actually use the `increment` variable (bug in my `pizza` PR).

- Suppress unused variable warnings in the fake pthread_create and
  pthread_join implementations for Windows.

- (not Windows-related) Remove mention of `asprintf` from comment;
  `asprintf` is no longer used.

Fixes #871.
2023-04-11 15:19:54 +02:00
comex
180b693a47 Print model version.
Also improve model type printing, and fix indentation of an unrelated
switch statement.
2023-04-10 01:10:46 +02:00
comex
f963b63afa Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt).  (However, I didn't
  include the hack needed to support GPT4All files without conversion.
  Those can still be used after converting them with convert.py from my
  other PR.)

- Support both mmap and read (mmap is used by default, but can be
  disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
  files or on platforms where mmap is not supported).

- Support multi-file models like before, but automatically determine the
  number of parts rather than requiring `--n_parts`.

- Improve validation and error checking.

- Stop using the per-file type field (f16) entirely in favor of just
  relying on the per-tensor type/size fields.  This has no immediate
  benefit, but makes it easier to experiment with different formats, and
  should make it easier to support the new GPTQ-for-LLaMa models in the
  future (I have some work in progress on that front).

- Support VirtualLock on Windows (using the same `--mlock` option as on
  Unix).

    - Indicate loading progress when using mmap + mlock.  (Which led me
      to the interesting observation that on my Linux machine, with a
      warm file cache, mlock actually takes some time, whereas mmap
      without mlock starts almost instantly...)

      - To help implement this, move mlock support from ggml to the
        loading code.

- madvise/PrefetchVirtualMemory support (based on #740)

- Switch from ifstream to the `fopen` family of functions to avoid
  unnecessary copying and, when mmap is enabled, allow reusing the same
  file descriptor for both metadata reads and mmap (whereas the existing
  implementation opens the file a second time to mmap).

- Quantization now produces a single-file output even with multi-file
  inputs (not really a feature as much as 'it was easier this way').

Implementation notes:

I tried to factor the code into more discrete pieces than before.

Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:

- Destructors to make it easier to ensure everything gets cleaned up.

- Exceptions.  I don't even usually use exceptions when writing C++, and
  I can remove them if desired... but here they make the loading code
  much more succinct while still properly handling a variety of errors,
  ranging from API calls failing to integer overflow and allocation
  failure.  The exceptions are converted to error codes at the
  API boundary.)

Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-10 01:10:46 +02:00
unbounded
62cfc54f77
Add quantize-stats command for testing quantization (#728)
Command that calculates some statistics over the errors introduced by
quantization, like mean square error, max error and some percentile errors for layer
weights. Should be useful for testing quantization improvements.

Exposes some internal state from ggml and llama for testing
2023-04-08 00:09:18 +02:00
Ivan Stepanov
4953e9007f
llama : always sort logits before nucleus sampling (#812)
* Always sort logits before nucleus sampling

* remove second normalization

- fix windows build
- remove normalization since std::discrete_distribution does not require it
2023-04-07 19:02:12 +03:00
Georgi Gerganov
986b6ce9f9
ggml, llama : avoid heavy V transpose + improvements (#775)
ggml :

- added ggml_view_3d()
- ggml_view_tensor() now inherits the stride too
- reimplement ggml_cpy() to account for dst stride
- no longer require tensor->data to be memory aligned

llama :

- compute RoPE on 32-bit tensors (should be more accurate)
- store RoPE-ed K in the KV cache
- store transposed V in the KV cache (significant speed-up)
- avoid unnecessary Q copy
2023-04-05 22:07:33 +03:00
Ivan Stepanov
5a8c4f6240
llama : define non-positive top_k; top_k range check (#779)
* Define non-positive top_k; top_k range check

* minor : brackets

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-05 19:20:05 +03:00
Ivan Stepanov
cd7fa95690
Define non-positive temperature behavior (#720) 2023-04-03 02:19:04 +02:00
Christian Falch
e986f94829
Added api for getting/setting the kv_cache (#685)
The api provides access methods for retrieving the current memory buffer for the kv_cache and its token number.
It also contains a method for setting the kv_cache from a memory buffer.

This makes it possible to load/save history - maybe support --cache-prompt paramater as well?

Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
2023-04-02 12:23:04 +02:00
Marian Cepok
c0bb1d3ce2
ggml : change ne to int64_t (#626) 2023-04-02 13:21:31 +03:00
Stephan Walter
81040f10aa
llama : do not allocate KV cache for "vocab_only == true" (#682)
Fixes sanitizer CI
2023-04-02 10:18:53 +03:00
Justine Tunney
ee0c40dd6d Introduce GGML migration tool for new file format
If you deleted your old Meta LLaMA .pth files, then the
migrate-ggml-2023-03-30-pr613.py script will allow you to convert your
old ggml files into the new mmap()'able format.

See #613
2023-03-30 12:28:25 -07:00
Justine Tunney
6f23ba5ee2 Ensure --mlock works properly with mmap() support 2023-03-30 12:28:25 -07:00
Justine Tunney
78ca9838ee Make loading weights 10-100x faster
This is a breaking change that's going to give you three benefits:

1. Your inference commands should load 100x faster
2. You may be able to safely load models 2x larger
3. You can run many concurrent inference processes

This was accomplished by changing the file format so we can mmap()
weights directly into memory without having to read() or copy them
thereby ensuring the kernel can make its file cache pages directly
accessible to our inference processes; and secondly, that the file
cache pages are much less likely to get evicted (which would force
loads to hit disk) because they're no longer competing with memory
pages that were needlessly created by gigabytes of standard i/o.

The new file format supports single-file models like LLaMA 7b, and
it also supports multi-file models like LLaMA 13B. Our Python tool
now merges the foo.1, foo.2, etc. files back into a single file so
that the C++ code which maps it doesn't need to reshape data every
time. That's made llama.cpp so much simpler. Much of its load code
has now been deleted.

Furthermore, this change ensures that tensors are aligned properly
on a 32-byte boundary. That opens the door to seeing if we can get
additional performance gains on some microprocessors, by using ops
that require memory alignment.

Lastly note that both POSIX and the Windows platform are supported

Fixes #91
2023-03-30 12:28:25 -07:00
Slaren
a017390358 Initial windows support (untested) 2023-03-30 12:28:25 -07:00
Slaren
ac184d5147 Always initialize mm_addr and mm_length in llama_model 2023-03-30 12:28:25 -07:00
Slaren
276e5b7811 Unmap the file in llama_free 2023-03-30 12:28:25 -07:00
Slaren
d68c5dc435 Make mmap_file static 2023-03-30 12:28:25 -07:00
Slaren
64bde3ffd4 Fix ggml_init_params in quantize 2023-03-30 12:28:25 -07:00
Slaren
c03ae8dca1 Add mmap support for model files 2023-03-30 12:28:25 -07:00
Georgi Gerganov
0ba76c1e73
llama : fix compile warnings when reading the vocab 2023-03-29 22:13:12 +03:00
Maël Kerbiriou
41318d708e
llama : use the same threshold for OpenBLAS and ggml thread limiting (#577) 2023-03-29 19:10:07 +03:00
thement
d0aaff571c
py : add temporary script to convert old ggml files to newer version (#539)
Co-authored-by: Jakub Horak <jakub.horak@ibawizard.net>
2023-03-28 20:55:42 +03:00
Stephan Walter
436e561931
all : be more strict about converting float to double (#458)
* Be more strict about converting float to double

* Test equivalence of round, SILU implementations

Test module is commented out in CMakeLists.txt because the tests may
take a long time, depending on how much the compiler optimizes.

* Fix softmax in perplexity.cpp

* all : prefer float over double where appropriate

* perplexity : add <cmath>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 19:48:20 +03:00
Stephan Walter
c1f885067c
ggml : introduce structs for the q4 data blocks (#356)
* Introduce structs for the q4 data blocks

* ggml : rename quant struct variables + fix ARM_NEON

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 18:56:03 +03:00