#include "ggml-mpi.h" #include "ggml.h" #include <mpi.h> #include <stdio.h> #include <stdlib.h> #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define UNUSED GGML_UNUSED struct ggml_mpi_context { int rank; int size; }; void ggml_mpi_backend_init(void) { MPI_Init(NULL, NULL); } void ggml_mpi_backend_free(void) { MPI_Finalize(); } struct ggml_mpi_context * ggml_mpi_init(void) { struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context)); MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank); MPI_Comm_size(MPI_COMM_WORLD, &ctx->size); return ctx; } void ggml_mpi_free(struct ggml_mpi_context * ctx) { free(ctx); } int ggml_mpi_rank(struct ggml_mpi_context * ctx) { return ctx->rank; } void ggml_mpi_eval_init( struct ggml_mpi_context * ctx_mpi, int * n_tokens, int * n_past, int * n_threads) { UNUSED(ctx_mpi); // synchronize the worker node parameters with the root node MPI_Barrier(MPI_COMM_WORLD); MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD); } static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) { struct ggml_tensor * t = ggml_graph_get_tensor(gf, name); if (t == NULL) { fprintf(stderr, "%s: tensor %s not found\n", __func__, name); return -1; } for (int i = 0; i < gf->n_nodes; i++) { if (gf->nodes[i] == t) { return i; } } fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name); return -1; } static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) { MPI_Datatype mpi_type; switch (t->type) { case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; default: GGML_ASSERT(false && "not implemented"); } const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD); GGML_ASSERT(retval == MPI_SUCCESS); } static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) { MPI_Datatype mpi_type; switch (t->type) { case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; default: GGML_ASSERT(false && "not implemented"); } MPI_Status status; UNUSED(status); const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); GGML_ASSERT(retval == MPI_SUCCESS); } // TODO: there are many improvements that can be done to this implementation void ggml_mpi_graph_compute_pre( struct ggml_mpi_context * ctx_mpi, struct ggml_cgraph * gf, int n_layers) { const int mpi_rank = ctx_mpi->rank; const int mpi_size = ctx_mpi->size; struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens"); if (inp_tokens == NULL) { fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__); return; } struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0"); if (inp0 == NULL) { fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__); return; } GGML_ASSERT(inp0 == gf->nodes[0]); // distribute the compute graph into slices across the MPI nodes // // the main node (0) processes the last layers + the remainder of the compute graph // and is responsible to pass the input tokens to the first node (1) // // node 1: [( 0) * n_per_node, ( 1) * n_per_node) // node 2: [( 1) * n_per_node, ( 2) * n_per_node) // ... // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node) // node 0: [(n-1) * n_per_node, n_nodes) // if (mpi_rank > 0) { if (mpi_rank == 1) { // the first node (1) receives the input tokens from the main node (0) ggml_mpi_tensor_recv(inp_tokens, 0); } else { // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph) ggml_mpi_tensor_recv(inp0, mpi_rank - 1); } } else if (mpi_size > 1) { // node 0 sends the input tokens to node 1 ggml_mpi_tensor_send(inp_tokens, 1); // recv the output data from the last node ggml_mpi_tensor_recv(inp0, mpi_size - 1); } { const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size; const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1; const int il0 = (mpi_idx + 0) * n_per_node; const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node); char name_l0[GGML_MAX_NAME]; char name_l1[GGML_MAX_NAME]; snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0); snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1); const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0); const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes; if (idx_l0 < 0 || idx_l1 < 0) { fprintf(stderr, "%s: layer input nodes not found\n", __func__); return; } // attach the input data to all nodes that need it // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below) for (int i = idx_l0; i < idx_l1; i++) { if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) { gf->nodes[i]->src[0] = inp0; } if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) { gf->nodes[i]->src[1] = inp0; } } // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph for (int i = 1; i < idx_l1 - idx_l0; i++) { gf->nodes[i] = gf->nodes[idx_l0 + i]; gf->grads[i] = gf->grads[idx_l0 + i]; } // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node if (mpi_idx != 0) { gf->nodes[0]->op = GGML_OP_NONE; } gf->n_nodes = idx_l1 - idx_l0; //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1); } } void ggml_mpi_graph_compute_post( struct ggml_mpi_context * ctx_mpi, struct ggml_cgraph * gf, int n_layers) { UNUSED(n_layers); const int mpi_rank = ctx_mpi->rank; const int mpi_size = ctx_mpi->size; // send the output data to the next node if (mpi_rank > 0) { ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size); } }