#include "ggml.h" #include #include #include #include #define MAX_NARGS 2 #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wdouble-promotion" #endif // // logging // #define GGML_DEBUG 0 #if (GGML_DEBUG >= 1) #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG(...) #endif #if (GGML_DEBUG >= 5) #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG_5(...) #endif #if (GGML_DEBUG >= 10) #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG_10(...) #endif #define GGML_PRINT(...) printf(__VA_ARGS__) static float frand(void) { return (float)rand()/(float)RAND_MAX; } static struct ggml_tensor * get_random_tensor( struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax ) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } } break; default: assert(false); } return result; } int main(void) { struct ggml_init_params params = { /* .mem_size = */ 1024*1024*1024, /* .mem_buffer = */ NULL, /* .no_alloc = */ false, }; struct ggml_context * ctx = ggml_init(params); int64_t ne1[4] = {4, 128, 1, 1}; int64_t ne2[4] = {4, 256, 1, 1}; int64_t ne3[4] = {128, 256, 1, 1}; struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1); struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1); ggml_set_param(ctx, a); ggml_set_param(ctx, b); struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1); struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b); struct ggml_tensor * d = ggml_sub(ctx, c, ab); struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d)); struct ggml_cgraph * ge = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true); ggml_build_forward_expand(ge, e); ggml_graph_reset(ge); ggml_graph_prepare(ge, 1, nullptr); ggml_graph_work_init(ge, nullptr); ggml_graph_compute(ge); ggml_graph_work_free(ge); const float fe = ggml_get_f32_1d(e, 0); printf("%s: e = %.4f\n", __func__, fe); struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM); ggml_opt(ctx, opt_params, e); ggml_graph_reset(ge); ggml_graph_prepare(ge, 1, nullptr); ggml_graph_work_init(ge, nullptr); ggml_graph_compute(ge); ggml_graph_work_free(ge); const float fe_opt = ggml_get_f32_1d(e, 0); printf("%s: original e = %.4f\n", __func__, fe); printf("%s: optimized e = %.4f\n", __func__, fe_opt); const bool success = (fe_opt <= fe); assert(success); ggml_free(ctx); return success ? 0 : -1; } // int64_t ne1[4] = {4, 128, 1, 1}; // int64_t ne2[4] = {4, 256, 1, 1};; // int64_t ne3[4] = {128, 256, 1, 1}; // main: original e = 25890.9375 // main: optimized e = 10094.7031 // int64_t ne1[4] = {8, 128, 1, 1}; // int64_t ne2[4] = {8, 256, 1, 1};; // int64_t ne3[4] = {128, 256, 1, 1}; // main: original e = 39429.5078 // main: optimized e = 9275.8936 // int64_t ne1[4] = {16, 128, 1, 1}; // int64_t ne2[4] = {16, 256, 1, 1};; // int64_t ne3[4] = {128, 256, 1, 1}; // main: original e = 68371.1328 // main: optimized e = 7854.4502 // int64_t ne1[4] = {32, 128, 1, 1}; // int64_t ne2[4] = {32, 256, 1, 1};; // int64_t ne3[4] = {128, 256, 1, 1}; // main: original e = 126061.1953 // main: optimized e = 5451.0166 // int64_t ne1[4] = {4, 1024, 1, 1}; // int64_t ne2[4] = {4, 2048, 1, 1};; // int64_t ne3[4] = {1024, 2048, 1, 1}; // main: original e = 1620817.8750 // main: optimized e = 698387.6875 // another run on M1 // int64_t ne1[4] = {4, 1024, 1, 1}; // int64_t ne2[4] = {4, 2048, 1, 1};; // int64_t ne3[4] = {1024, 2048, 1, 1}; // main: original e = 1629595.6250 // main: optimized e = 698169.1250 // int64_t ne1[4] = {32, 1024, 1, 1}; // int64_t ne2[4] = {32, 2048, 1, 1};; // int64_t ne3[4] = {1024, 2048, 1, 1}; // main: original e = 8146770.5000 // main: optimized e = 651119.1250