# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format # the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the WavTokenizer decoder # # TODO: this script is LLM-generated and probably very inefficient and should be rewritten import torch import json import os import sys import re from safetensors.torch import save_file # default model_path = './model.pt'; # read from CLI if len(sys.argv) > 1: model_path = sys.argv[1] # get the directory of the input model path_dst = os.path.dirname(model_path) print(f"Loading model from {model_path}") model = torch.load(model_path, map_location='cpu') #print(model) # print all keys for key in model.keys(): print(key) if key == 'hyper_parameters': #print(model[key]) # dump as json pretty print(json.dumps(model[key], indent=4)) #if key != 'state_dict' and key != 'optimizer_states': # print(model[key]) # Check if the loaded model is a state_dict or a model instance if isinstance(model, torch.nn.Module): state_dict = model.state_dict() else: state_dict = model # Print the structure of the state_dict to understand its format print("State dictionary keys:") for key in state_dict.keys(): print(key) # Ensure the state_dict is flat and contains only torch.Tensor objects def flatten_state_dict(state_dict, parent_key='', sep='.'): items = [] items_new = [] for k, v in state_dict.items(): new_key = f"{parent_key}{sep}{k}" if parent_key else k if isinstance(v, torch.Tensor): items.append((new_key, v)) elif isinstance(v, dict): items.extend(flatten_state_dict(v, new_key, sep=sep).items()) return dict(items) size_total_mb = 0 for key, value in list(items): # keep only what we need for inference if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \ not key.startswith('state_dict.backbone.') and \ not key.startswith('state_dict.head.out'): print('Skipping key: ', key) continue new_key = key new_key = new_key.replace('state_dict.', '') new_key = new_key.replace('pos_net', 'posnet') # check if matches "backbone.posnet.%d.bias" or "backbone.posnet.%d.weight" if new_key.startswith("backbone.posnet."): match = re.match(r"backbone\.posnet\.(\d+)\.(bias|weight)", new_key) if match: new_key = f"backbone.posnet.{match.group(1)}.norm.{match.group(2)}" # "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed" -> "backbone.embedding.weight" if new_key == "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed": new_key = "backbone.embedding.weight" # these are the only rows used # ref: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/wav_tokenizer/audio_codec.py#L100 if new_key.endswith("norm.scale.weight"): new_key = new_key.replace("norm.scale.weight", "norm.weight") value = value[0] if new_key.endswith("norm.shift.weight"): new_key = new_key.replace("norm.shift.weight", "norm.bias") value = value[0] if new_key.endswith("gamma"): new_key = new_key.replace("gamma", "gamma.weight") # convert from 1D [768] to 2D [768, 1] so that ggml_add can broadcast the bias if (new_key.endswith("norm.weight") or new_key.endswith("norm1.weight") or new_key.endswith("norm2.weight") or new_key.endswith(".bias")) and (new_key.startswith("backbone.posnet") or new_key.startswith("backbone.embed.bias")): value = value.unsqueeze(1) if new_key.endswith("dwconv.bias"): value = value.unsqueeze(1) size_mb = value.element_size() * value.nelement() / (1024 * 1024) print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}") size_total_mb += size_mb #print(key, '->', new_key, ': ', value) #print(key, '->', new_key) items_new.append((new_key, value)) print(f"Total size: {size_total_mb:8.2f} MB") return dict(items_new) flattened_state_dict = flatten_state_dict(state_dict) # Convert the model to the safetensors format output_path = path_dst + '/model.safetensors' save_file(flattened_state_dict, output_path) print(f"Model has been successfully converted and saved to {output_path}") # Calculate the total size of the .safetensors file total_size = os.path.getsize(output_path) # Create the weight map weight_map = { "model.safetensors": ["*"] # Assuming all weights are in one file } # Create metadata for the index.json file metadata = { "total_size": total_size, "weight_map": weight_map } # Save the metadata to index.json index_path = path_dst + '/index.json' with open(index_path, 'w') as f: json.dump(metadata, f, indent=4) print(f"Metadata has been saved to {index_path}") config = { "architectures": [ "WavTokenizerDec" ], "hidden_size": 1282, "n_embd_features": 512, "n_ff": 2304, "vocab_size": 4096, "n_head": 1, "layer_norm_epsilon": 1e-6, "group_norm_epsilon": 1e-6, "group_norm_groups": 32, "max_position_embeddings": 8192, # ? "n_layer": 12, "posnet": { "n_embd": 768, "n_layer": 6 }, "convnext": { "n_embd": 768, "n_layer": 12 }, } with open(path_dst + '/config.json', 'w') as f: json.dump(config, f, indent=4) print(f"Config has been saved to {path_dst + 'config.json'}")