#if defined(_WIN32) #include #else #include #endif #include #include #include #include #include #include #include #include #include "llama-cpp.h" typedef std::unique_ptr char_array_ptr; struct Argument { std::string flag; std::string help_text; }; struct Options { std::string model_path, prompt_non_interactive; int ngl = 99; int n_ctx = 2048; }; class ArgumentParser { public: ArgumentParser(const char * program_name) : program_name(program_name) {} void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") { string_args[flag] = &var; arguments.push_back({flag, help_text}); } void add_argument(const std::string & flag, int & var, const std::string & help_text = "") { int_args[flag] = &var; arguments.push_back({flag, help_text}); } int parse(int argc, const char ** argv) { for (int i = 1; i < argc; ++i) { std::string arg = argv[i]; if (string_args.count(arg)) { if (i + 1 < argc) { *string_args[arg] = argv[++i]; } else { fprintf(stderr, "error: missing value for %s\n", arg.c_str()); print_usage(); return 1; } } else if (int_args.count(arg)) { if (i + 1 < argc) { if (parse_int_arg(argv[++i], *int_args[arg]) != 0) { fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]); print_usage(); return 1; } } else { fprintf(stderr, "error: missing value for %s\n", arg.c_str()); print_usage(); return 1; } } else { fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str()); print_usage(); return 1; } } if (string_args["-m"]->empty()) { fprintf(stderr, "error: -m is required\n"); print_usage(); return 1; } return 0; } private: const char * program_name; std::unordered_map string_args; std::unordered_map int_args; std::vector arguments; int parse_int_arg(const char * arg, int & value) { char * end; const long val = std::strtol(arg, &end, 10); if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) { value = static_cast(val); return 0; } return 1; } void print_usage() const { printf("\nUsage:\n"); printf(" %s [OPTIONS]\n\n", program_name); printf("Options:\n"); for (const auto & arg : arguments) { printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str()); } printf("\n"); } }; class LlamaData { public: llama_model_ptr model; llama_sampler_ptr sampler; llama_context_ptr context; std::vector messages; int init(const Options & opt) { model = initialize_model(opt.model_path, opt.ngl); if (!model) { return 1; } context = initialize_context(model, opt.n_ctx); if (!context) { return 1; } sampler = initialize_sampler(); return 0; } private: // Initializes the model and returns a unique pointer to it llama_model_ptr initialize_model(const std::string & model_path, const int ngl) { llama_model_params model_params = llama_model_default_params(); model_params.n_gpu_layers = ngl; llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params)); if (!model) { fprintf(stderr, "%s: error: unable to load model\n", __func__); } return model; } // Initializes the context with the specified parameters llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) { llama_context_params ctx_params = llama_context_default_params(); ctx_params.n_ctx = n_ctx; ctx_params.n_batch = n_ctx; llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params)); if (!context) { fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__); } return context; } // Initializes and configures the sampler llama_sampler_ptr initialize_sampler() { llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params())); llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1)); llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f)); llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); return sampler; } }; // Add a message to `messages` and store its content in `owned_content` static void add_message(const char * role, const std::string & text, LlamaData & llama_data, std::vector & owned_content) { char_array_ptr content(new char[text.size() + 1]); std::strcpy(content.get(), text.c_str()); llama_data.messages.push_back({role, content.get()}); owned_content.push_back(std::move(content)); } // Function to apply the chat template and resize `formatted` if needed static int apply_chat_template(const LlamaData & llama_data, std::vector & formatted, const bool append) { int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append, formatted.data(), formatted.size()); if (result > static_cast(formatted.size())) { formatted.resize(result); result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append, formatted.data(), formatted.size()); } return result; } // Function to tokenize the prompt static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt, std::vector & prompt_tokens) { const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true); prompt_tokens.resize(n_prompt_tokens); if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { GGML_ABORT("failed to tokenize the prompt\n"); } return n_prompt_tokens; } // Check if we have enough space in the context to evaluate this batch static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) { const int n_ctx = llama_n_ctx(ctx.get()); const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get()); if (n_ctx_used + batch.n_tokens > n_ctx) { printf("\033[0m\n"); fprintf(stderr, "context size exceeded\n"); return 1; } return 0; } // convert the token to a string static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) { char buf[256]; int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true); if (n < 0) { GGML_ABORT("failed to convert token to piece\n"); } piece = std::string(buf, n); return 0; } static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) { printf("%s", piece.c_str()); fflush(stdout); response += piece; } // helper function to evaluate a prompt and generate a response static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) { std::vector prompt_tokens; const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens); if (n_prompt_tokens < 0) { return 1; } // prepare a batch for the prompt llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); llama_token new_token_id; while (true) { check_context_size(llama_data.context, batch); if (llama_decode(llama_data.context.get(), batch)) { GGML_ABORT("failed to decode\n"); } // sample the next token, check is it an end of generation? new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1); if (llama_token_is_eog(llama_data.model.get(), new_token_id)) { break; } std::string piece; if (convert_token_to_string(llama_data.model, new_token_id, piece)) { return 1; } print_word_and_concatenate_to_response(piece, response); // prepare the next batch with the sampled token batch = llama_batch_get_one(&new_token_id, 1); } return 0; } static int parse_arguments(const int argc, const char ** argv, Options & opt) { ArgumentParser parser(argv[0]); parser.add_argument("-m", opt.model_path, "model"); parser.add_argument("-p", opt.prompt_non_interactive, "prompt"); parser.add_argument("-c", opt.n_ctx, "context_size"); parser.add_argument("-ngl", opt.ngl, "n_gpu_layers"); if (parser.parse(argc, argv)) { return 1; } return 0; } static int read_user_input(std::string & user) { std::getline(std::cin, user); return user.empty(); // Indicate an error or empty input } // Function to generate a response based on the prompt static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) { // Set response color printf("\033[33m"); if (generate(llama_data, prompt, response)) { fprintf(stderr, "failed to generate response\n"); return 1; } // End response with color reset and newline printf("\n\033[0m"); return 0; } // Helper function to apply the chat template and handle errors static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector & formatted, const bool is_user_input, int & output_length) { const int new_len = apply_chat_template(llama_data, formatted, is_user_input); if (new_len < 0) { fprintf(stderr, "failed to apply the chat template\n"); return -1; } output_length = new_len; return 0; } // Helper function to handle user input static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) { if (!prompt_non_interactive.empty()) { user_input = prompt_non_interactive; return true; // No need for interactive input } printf("\033[32m> \033[0m"); return !read_user_input(user_input); // Returns false if input ends the loop } // Function to tokenize the prompt static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) { std::vector owned_content; std::vector fmtted(llama_n_ctx(llama_data.context.get())); int prev_len = 0; while (true) { // Get user input std::string user_input; if (!handle_user_input(user_input, prompt_non_interactive)) { break; } add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data, owned_content); int new_len; if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) { return 1; } std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len); std::string response; if (generate_response(llama_data, prompt, response)) { return 1; } } return 0; } static void log_callback(const enum ggml_log_level level, const char * text, void *) { if (level == GGML_LOG_LEVEL_ERROR) { fprintf(stderr, "%s", text); } } static bool is_stdin_a_terminal() { #if defined(_WIN32) HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE); DWORD mode; return GetConsoleMode(hStdin, &mode); #else return isatty(STDIN_FILENO); #endif } static std::string read_pipe_data() { std::ostringstream result; result << std::cin.rdbuf(); // Read all data from std::cin return result.str(); } int main(int argc, const char ** argv) { Options opt; if (parse_arguments(argc, argv, opt)) { return 1; } if (!is_stdin_a_terminal()) { if (!opt.prompt_non_interactive.empty()) { opt.prompt_non_interactive += "\n\n"; } opt.prompt_non_interactive += read_pipe_data(); } llama_log_set(log_callback, nullptr); LlamaData llama_data; if (llama_data.init(opt)) { return 1; } if (chat_loop(llama_data, opt.prompt_non_interactive)) { return 1; } return 0; }