#include "llama.h" #include <cstdio> #include <cstring> #include <string> #include <vector> static void print_usage(int, char ** argv) { printf("\nexample usage:\n"); printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); printf("\n"); } int main(int argc, char ** argv) { // path to the model gguf file std::string model_path; // prompt to generate text from std::string prompt = "Hello my name is"; // number of layers to offload to the GPU int ngl = 99; // number of tokens to predict int n_predict = 32; // parse command line arguments { int i = 1; for (; i < argc; i++) { if (strcmp(argv[i], "-m") == 0) { if (i + 1 < argc) { model_path = argv[++i]; } else { print_usage(argc, argv); return 1; } } else if (strcmp(argv[i], "-n") == 0) { if (i + 1 < argc) { try { n_predict = std::stoi(argv[++i]); } catch (...) { print_usage(argc, argv); return 1; } } else { print_usage(argc, argv); return 1; } } else if (strcmp(argv[i], "-ngl") == 0) { if (i + 1 < argc) { try { ngl = std::stoi(argv[++i]); } catch (...) { print_usage(argc, argv); return 1; } } else { print_usage(argc, argv); return 1; } } else { // prompt starts here break; } } if (model_path.empty()) { print_usage(argc, argv); return 1; } if (i < argc) { prompt = argv[i++]; for (; i < argc; i++) { prompt += " "; prompt += argv[i]; } } } // load dynamic backends ggml_backend_load_all(); // initialize the model llama_model_params model_params = llama_model_default_params(); model_params.n_gpu_layers = ngl; llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // tokenize the prompt // find the number of tokens in the prompt const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); // allocate space for the tokens and tokenize the prompt std::vector<llama_token> prompt_tokens(n_prompt); if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); return 1; } // initialize the context llama_context_params ctx_params = llama_context_default_params(); // n_ctx is the context size ctx_params.n_ctx = n_prompt + n_predict - 1; // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode ctx_params.n_batch = n_prompt; // enable performance counters ctx_params.no_perf = false; llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } // initialize the sampler auto sparams = llama_sampler_chain_default_params(); sparams.no_perf = false; llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); // print the prompt token-by-token for (auto id : prompt_tokens) { char buf[128]; int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); if (n < 0) { fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); return 1; } std::string s(buf, n); printf("%s", s.c_str()); } // prepare a batch for the prompt llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); // main loop const auto t_main_start = ggml_time_us(); int n_decode = 0; llama_token new_token_id; for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } n_pos += batch.n_tokens; // sample the next token { new_token_id = llama_sampler_sample(smpl, ctx, -1); // is it an end of generation? if (llama_token_is_eog(model, new_token_id)) { break; } char buf[128]; int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); if (n < 0) { fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); return 1; } std::string s(buf, n); printf("%s", s.c_str()); fflush(stdout); // prepare the next batch with the sampled token batch = llama_batch_get_one(&new_token_id, 1); n_decode += 1; } } printf("\n"); const auto t_main_end = ggml_time_us(); fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); fprintf(stderr, "\n"); llama_perf_sampler_print(smpl); llama_perf_context_print(ctx); fprintf(stderr, "\n"); llama_sampler_free(smpl); llama_free(ctx); llama_free_model(model); return 0; }