#ifndef LLAMA_H #define LLAMA_H #include "ggml.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES #else #define LLAMA_MAX_DEVICES 1 #endif // GGML_USE_CUBLAS #include #include #include #ifdef LLAMA_SHARED # if defined(_WIN32) && !defined(__MINGW32__) # ifdef LLAMA_BUILD # define LLAMA_API __declspec(dllexport) # else # define LLAMA_API __declspec(dllimport) # endif # else # define LLAMA_API __attribute__ ((visibility ("default"))) # endif #else # define LLAMA_API #endif #ifdef __GNUC__ # define DEPRECATED(func, hint) func __attribute__((deprecated(hint))) #elif defined(_MSC_VER) # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func #else # define DEPRECATED(func, hint) func #endif #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla' #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf' #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml' #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn' #define LLAMA_FILE_VERSION 3 #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN #define LLAMA_SESSION_VERSION 1 #define LLAMA_DEFAULT_SEED 0xFFFFFFFF #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. #define LLAMA_SUPPORTS_GPU_OFFLOAD #endif #ifdef __cplusplus extern "C" { #endif // // C interface // // TODO: show sample usage // struct llama_model; struct llama_context; typedef int llama_token; typedef struct llama_token_data { llama_token id; // token id float logit; // log-odds of the token float p; // probability of the token } llama_token_data; typedef struct llama_token_data_array { llama_token_data * data; size_t size; bool sorted; } llama_token_data_array; typedef void (*llama_progress_callback)(float progress, void *ctx); struct llama_context_params { uint32_t seed; // RNG seed, -1 for random int32_t n_ctx; // text context int32_t n_batch; // prompt processing batch size int32_t n_gpu_layers; // number of layers to store in VRAM int32_t main_gpu; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs // called with a progress value between 0 and 1, pass NULL to disable llama_progress_callback progress_callback; // context pointer passed to the progress callback void * progress_callback_user_data; // Keep the booleans together to avoid misalignment during copy-by-value. bool low_vram; // if true, reduce VRAM usage at the cost of performance bool f16_kv; // use fp16 for KV cache bool logits_all; // the llama_eval() call computes all logits, not just the last one bool vocab_only; // only load the vocabulary, no weights bool use_mmap; // use mmap if possible bool use_mlock; // force system to keep model in RAM bool embedding; // embedding mode only }; // model file types enum llama_ftype { LLAMA_FTYPE_ALL_F32 = 0, LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors }; // model quantization parameters typedef struct llama_model_quantize_params { int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() enum llama_ftype ftype; // quantize to this llama_ftype bool allow_requantize; // allow quantizing non-f32/f16 tensors bool quantize_output_tensor; // quantize output.weight } llama_model_quantize_params; // performance timing information struct llama_timings { double t_start_ms; double t_end_ms; double load_time_ms; double sample_time_ms; double prompt_eval_time_ms; double eval_time_ms; int32_t n_sample; int32_t n_p_eval; int32_t n_eval; }; LLAMA_API struct llama_context_params llama_context_default_params(); LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(); LLAMA_API bool llama_mmap_supported(); LLAMA_API bool llama_mlock_supported(); // TODO: not great API - very likely to change // Initialize the llama + ggml backend // If numa is true, use NUMA optimizations // Call once at the start of the program LLAMA_API void llama_init_backend(bool numa); LLAMA_API int64_t llama_time_us(); LLAMA_API struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_context_params params); LLAMA_API void llama_free_model(struct llama_model * model); LLAMA_API struct llama_context * llama_new_context_with_model( struct llama_model * model, struct llama_context_params params); // Various functions for loading a ggml llama model. // Allocate (almost) all memory needed for the model. // Return NULL on failure LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file( const char * path_model, struct llama_context_params params), "please use llama_load_model_from_file combined with llama_new_context_with_model instead"); // Frees all allocated memory LLAMA_API void llama_free(struct llama_context * ctx); // Returns 0 on success LLAMA_API int llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params * params); // Apply a LoRA adapter to a loaded model // path_base_model is the path to a higher quality model to use as a base for // the layers modified by the adapter. Can be NULL to use the current loaded model. // The model needs to be reloaded before applying a new adapter, otherwise the adapter // will be applied on top of the previous one // Returns 0 on success LLAMA_API DEPRECATED(int llama_apply_lora_from_file( struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads), "please use llama_model_apply_lora_from_file instead"); LLAMA_API int llama_model_apply_lora_from_file( const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads); // Returns the number of tokens in the KV cache LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx); // Sets the current rng seed. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); // Returns the maximum size in bytes of the state (rng, logits, embedding // and kv_cache) - will often be smaller after compacting tokens LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx); // Copies the state to the specified destination address. // Destination needs to have allocated enough memory. // Returns the number of bytes copied LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst); // Set the state reading from the specified address // Returns the number of bytes read LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src); // Save/load session file LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count); // Run the llama inference to obtain the logits and probabilities for the next token. // tokens + n_tokens is the provided batch of new tokens to process // n_past is the number of tokens to use from previous eval calls // Returns 0 on success LLAMA_API int llama_eval( struct llama_context * ctx, const llama_token * tokens, int n_tokens, int n_past, int n_threads); // Same as llama_eval, but use float matrix input directly. LLAMA_API int llama_eval_embd( struct llama_context * ctx, const float * embd, int n_tokens, int n_past, int n_threads); // Export a static computation graph for context of 511 and batch size of 1 // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these // parameters here to keep things simple // IMPORTANT: do not use for anything else other than debugging and testing! LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname); // Convert the provided text into tokens. // The tokens pointer must be large enough to hold the resulting tokens. // Returns the number of tokens on success, no more than n_max_tokens // Returns a negative number on failure - the number of tokens that would have been returned // TODO: not sure if correct LLAMA_API int llama_tokenize( struct llama_context * ctx, const char * text, llama_token * tokens, int n_max_tokens, bool add_bos); LLAMA_API int llama_n_vocab(const struct llama_context * ctx); LLAMA_API int llama_n_ctx (const struct llama_context * ctx); LLAMA_API int llama_n_embd (const struct llama_context * ctx); // Get the vocabulary as output parameters. // Returns number of results. LLAMA_API int llama_get_vocab( const struct llama_context * ctx, const char * * strings, float * scores, int capacity); // Token logits obtained from the last call to llama_eval() // The logits for the last token are stored in the last row // Can be mutated in order to change the probabilities of the next token // Rows: n_tokens // Cols: n_vocab LLAMA_API float * llama_get_logits(struct llama_context * ctx); // Get the embeddings for the input // shape: [n_embd] (1-dimensional) LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); // Token Id -> String. Uses the vocabulary in the provided context LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token); // Special tokens LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence LLAMA_API llama_token llama_token_eos(); // end-of-sentence LLAMA_API llama_token llama_token_nl(); // next-line // Sampling functions /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty); /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep); /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep); /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp); /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu); /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu); /// @details Selects the token with the highest probability. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates); /// @details Randomly selects a token from the candidates based on their probabilities. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates); // Performance information LLAMA_API llama_timings llama_get_timings(struct llama_context * ctx); LLAMA_API void llama_print_timings(struct llama_context * ctx); LLAMA_API void llama_reset_timings(struct llama_context * ctx); // Print system information LLAMA_API const char * llama_print_system_info(void); #ifdef __cplusplus } #endif // Internal API to be implemented by llama.cpp and used by tests/benchmarks only #ifdef LLAMA_API_INTERNAL #include #include struct ggml_tensor; const std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); #endif #endif // LLAMA_H