#pragma once // // GGML Tensor Library // // This documentation is still a work in progress. // If you wish some specific topics to be covered, feel free to drop a comment: // // https://github.com/ggerganov/whisper.cpp/issues/40 // // ## Overview // // This library implements: // // - a set of tensor operations // - automatic differentiation // - basic optimization algorithms // // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes, // but is not limited to, the following: // // - linear regression // - support vector machines // - neural networks // // The library allows the user to define a certain function using the available tensor operations. This function // definition is represented internally via a computation graph. Each tensor operation in the function definition // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized // using one of the available optimization algorithms. // // For example, here we define the function: f(x) = a*x^2 + b // // { // struct ggml_init_params params = { // .mem_size = 16*1024*1024, // .mem_buffer = NULL, // }; // // // memory allocation happens here // struct ggml_context * ctx = ggml_init(params); // // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); // // ggml_set_param(ctx, x); // x is an input variable // // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); // struct ggml_tensor * x2 = ggml_mul(ctx, x, x); // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b); // // ... // } // // Notice that the function definition above does not involve any actual computation. The computation is performed only // when the user explicitly requests it. For example, to compute the function's value at x = 2.0: // // { // ... // // struct ggml_cgraph gf = ggml_build_forward(f); // // // set the input variable and parameter values // ggml_set_f32(x, 2.0f); // ggml_set_f32(a, 3.0f); // ggml_set_f32(b, 4.0f); // // ggml_graph_compute(ctx0, &gf); // // printf("f = %f\n", ggml_get_f32_1d(f, 0)); // // ... // } // // The actual computation is performed in the ggml_graph_compute() function. // // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was // actually needed. // // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic // differentiation and optimization algorithms. // // The described approach allows to define the function graph once and then compute its forward or backward graphs // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way // the user can avoid the memory allocation overhead at runtime. // // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class // citizens, but in theory the library can be extended to support FP8 and integer data types. // // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary // and binary operations. Most of the available operations fall into one of these two categories. With time, it became // clear that the library needs to support more complex operations. The way to support these operations is not clear // yet, but a few examples are demonstrated in the following operations: // // - ggml_permute() // - ggml_conv_1d_1s() // - ggml_conv_1d_2s() // // For each tensor operator, the library implements a forward and backward computation function. The forward function // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a // calculus class, or watch the following video: // // What is Automatic Differentiation? // https://www.youtube.com/watch?v=wG_nF1awSSY // // // ## Tensor data (struct ggml_tensor) // // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example: // // { // struct ggml_tensor * c = ggml_add(ctx, a, b); // // assert(c->src[0] == a); // assert(c->src[1] == b); // } // // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and // permutation. All tensor operations have to take the stride into account and not assume that the tensor is // contiguous in memory. // // The data of the tensor is accessed via the "data" pointer. For example: // // { // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3); // // // a[1, 2] = 1.0f; // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f; // // // a[2, 0] = 2.0f; // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f; // // ... // } // // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used. // // ## The matrix multiplication operator (ggml_mul_mat) // // TODO // // // ## Multi-threading // // TODO // // // ## Overview of ggml.c // // TODO // // // ## SIMD optimizations // // TODO // // // ## Debugging ggml // // TODO // // #ifdef __cplusplus extern "C" { #endif #include <stdint.h> #include <stddef.h> #include <stdbool.h> #define GGML_MAX_DIMS 4 #define GGML_MAX_NODES 4096 #define GGML_MAX_PARAMS 16 #define GGML_MAX_CONTEXTS 64 #define GGML_MAX_OPT 4 #ifdef __ARM_NEON // we use the built-in 16-bit float type typedef __fp16 ggml_fp16_t; #else typedef uint16_t ggml_fp16_t; #endif // convert FP16 <-> FP32 float ggml_fp16_to_fp32(ggml_fp16_t x); ggml_fp16_t ggml_fp32_to_fp16(float x); struct ggml_object; struct ggml_context; enum ggml_type { GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_F32, GGML_TYPE_COUNT, }; // available tensor operations: enum ggml_op { GGML_OP_NONE = 0, GGML_OP_DUP, GGML_OP_ADD, GGML_OP_SUB, GGML_OP_MUL, GGML_OP_DIV, GGML_OP_SQR, GGML_OP_SQRT, GGML_OP_SUM, GGML_OP_MEAN, GGML_OP_REPEAT, GGML_OP_ABS, GGML_OP_SGN, GGML_OP_NEG, GGML_OP_STEP, GGML_OP_RELU, GGML_OP_GELU, GGML_OP_SILU, GGML_OP_NORM, // normalize GGML_OP_RMS_NORM, GGML_OP_MUL_MAT, GGML_OP_SCALE, GGML_OP_CPY, GGML_OP_RESHAPE, GGML_OP_VIEW, GGML_OP_PERMUTE, GGML_OP_TRANSPOSE, GGML_OP_GET_ROWS, GGML_OP_DIAG_MASK_INF, GGML_OP_SOFT_MAX, GGML_OP_ROPE, GGML_OP_CONV_1D_1S, GGML_OP_CONV_1D_2S, GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, GGML_OP_COUNT, }; // n-dimensional tensor struct ggml_tensor { enum ggml_type type; int n_dims; int ne[GGML_MAX_DIMS]; // number of elements size_t nb[GGML_MAX_DIMS]; // stride in bytes: // nb[0] = sizeof(type) // nb[1] = nb[0] * ne[0] + padding // nb[i] = nb[i-1] * ne[i-1] // compute data enum ggml_op op; bool is_param; struct ggml_tensor * grad; struct ggml_tensor * src0; struct ggml_tensor * src1; struct ggml_tensor * opt[GGML_MAX_OPT]; // thread scheduling int n_tasks; // performance int perf_runs; int64_t perf_cycles; int64_t perf_time_us; void * data; char padding[8]; }; // computation graph struct ggml_cgraph { int n_nodes; int n_leafs; int n_threads; size_t work_size; struct ggml_tensor * work; struct ggml_tensor * nodes[GGML_MAX_NODES]; struct ggml_tensor * grads[GGML_MAX_NODES]; struct ggml_tensor * leafs[GGML_MAX_NODES]; // performance int perf_runs; int64_t perf_cycles; int64_t perf_time_us; }; // scratch buffer struct ggml_scratch { size_t offs; size_t size; void * data; }; struct ggml_init_params { // memory pool size_t mem_size; // bytes void * mem_buffer; // if NULL, memory will be allocated internally }; void ggml_time_init(void); // call this once at the beginning of the program int64_t ggml_time_ms(void); int64_t ggml_time_us(void); int64_t ggml_cycles(void); int64_t ggml_cycles_per_ms(void); void ggml_print_object (const struct ggml_object * obj); void ggml_print_objects(const struct ggml_context * ctx); int ggml_nelements(const struct ggml_tensor * tensor); size_t ggml_nbytes (const struct ggml_tensor * tensor); int ggml_blck_size (enum ggml_type type); size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float size_t ggml_element_size(const struct ggml_tensor * tensor); struct ggml_context * ggml_init(struct ggml_init_params params); void ggml_free(struct ggml_context * ctx); size_t ggml_used_mem(const struct ggml_context * ctx); size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch); struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, enum ggml_type type, int n_dims, const int *ne); struct ggml_tensor * ggml_new_tensor_1d( struct ggml_context * ctx, enum ggml_type type, int ne0); struct ggml_tensor * ggml_new_tensor_2d( struct ggml_context * ctx, enum ggml_type type, int ne0, int ne1); struct ggml_tensor * ggml_new_tensor_3d( struct ggml_context * ctx, enum ggml_type type, int ne0, int ne1, int ne2); struct ggml_tensor * ggml_new_tensor_4d( struct ggml_context * ctx, enum ggml_type type, int ne0, int ne1, int ne2, int ne3); struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); void * ggml_get_data (const struct ggml_tensor * tensor); float * ggml_get_data_f32(const struct ggml_tensor * tensor); // // operations on tensors with backpropagation // struct ggml_tensor * ggml_dup( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_add( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_sub( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_mul( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_div( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_sqr( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_sqrt( struct ggml_context * ctx, struct ggml_tensor * a); // return scalar // TODO: compute sum along rows struct ggml_tensor * ggml_sum( struct ggml_context * ctx, struct ggml_tensor * a); // mean along rows struct ggml_tensor * ggml_mean( struct ggml_context * ctx, struct ggml_tensor * a); // if a is the same shape as b, and a is not parameter, return a // otherwise, return a new tensor: repeat(a) to fit in b struct ggml_tensor * ggml_repeat( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_abs( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_sgn( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_neg( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_step( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_relu( struct ggml_context * ctx, struct ggml_tensor * a); // TODO: double-check this computation is correct struct ggml_tensor * ggml_gelu( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_silu( struct ggml_context * ctx, struct ggml_tensor * a); // normalize along rows // TODO: eps is hardcoded to 1e-5 for now struct ggml_tensor * ggml_norm( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_rms_norm( struct ggml_context * ctx, struct ggml_tensor * a); // A: m rows, n columns // B: p rows, n columns (i.e. we transpose it internally) // result is m columns, p rows struct ggml_tensor * ggml_mul_mat( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // // operations on tensors without backpropagation // // in-place, returns view(a) struct ggml_tensor * ggml_scale( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // a -> b, return view(b) struct ggml_tensor * ggml_cpy( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // return view(a), b specifies the new shape // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // return view(a) // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape_2d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, int ne1); // return view(a) // TODO: when we start computing gradient, make a copy instead of view struct ggml_tensor * ggml_reshape_3d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, int ne1, int ne2); // offset in bytes struct ggml_tensor * ggml_view_1d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, size_t offset); struct ggml_tensor * ggml_view_2d( struct ggml_context * ctx, struct ggml_tensor * a, int ne0, int ne1, size_t nb1, // row stride in bytes size_t offset); struct ggml_tensor * ggml_permute( struct ggml_context * ctx, struct ggml_tensor * a, int axis0, int axis1, int axis2, int axis3); // alias for ggml_permute(ctx, a, 1, 0, 2, 3) struct ggml_tensor * ggml_transpose( struct ggml_context * ctx, struct ggml_tensor * a); struct ggml_tensor * ggml_get_rows( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); // set elements above the diagonal to -INF // in-place, returns view(a) struct ggml_tensor * ggml_diag_mask_inf( struct ggml_context * ctx, struct ggml_tensor * a, int n_past); // in-place, returns view(a) struct ggml_tensor * ggml_soft_max( struct ggml_context * ctx, struct ggml_tensor * a); // rotary position embedding // in-place, returns view(a) // if mode == 1, skip n_past elements // TODO: avoid creating a new tensor every time struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, int n_past, int n_dims, int mode); // padding = 1 // TODO: we don't support extra parameters for now // that's why we are hard-coding the stride, padding, and dilation // not great .. struct ggml_tensor * ggml_conv_1d_1s( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_conv_1d_2s( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b); struct ggml_tensor * ggml_flash_attn( struct ggml_context * ctx, struct ggml_tensor * q, struct ggml_tensor * k, struct ggml_tensor * v, bool masked); struct ggml_tensor * ggml_flash_ff( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b0, struct ggml_tensor * b1, struct ggml_tensor * c0, struct ggml_tensor * c1); // // automatic differentiation // void ggml_set_param( struct ggml_context * ctx, struct ggml_tensor * tensor); void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); void ggml_graph_reset (struct ggml_cgraph * cgraph); // print info and performance information for the graph void ggml_graph_print(const struct ggml_cgraph * cgraph); // dump the graph into a file using the dot format void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); // // optimization // // optimization methods enum ggml_opt_type { GGML_OPT_ADAM, GGML_OPT_LBFGS, }; // linesearch methods enum ggml_linesearch { GGML_LINESEARCH_DEFAULT = 1, GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, }; // optimization return values enum ggml_opt_result { GGML_OPT_OK = 0, GGML_OPT_DID_NOT_CONVERGE, GGML_OPT_NO_CONTEXT, GGML_OPT_INVALID_WOLFE, GGML_OPT_FAIL, GGML_LINESEARCH_FAIL = -128, GGML_LINESEARCH_MINIMUM_STEP, GGML_LINESEARCH_MAXIMUM_STEP, GGML_LINESEARCH_MAXIMUM_ITERATIONS, GGML_LINESEARCH_INVALID_PARAMETERS, }; // optimization parameters // // see ggml.c (ggml_opt_default_params) for default values // struct ggml_opt_params { enum ggml_opt_type type; int n_threads; // delta-based convergence test // // if past == 0 - disabled // if past > 0: // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) // int past; float delta; // maximum number of iterations without improvement // // if 0 - disabled // if > 0: // assume convergence if no cost improvement in this number of iterations // int max_no_improvement; bool print_forward_graph; bool print_backward_graph; // ADAM parameters struct { int n_iter; float alpha; // learning rate float beta1; float beta2; float eps; // epsilon for numerical stability float eps_f; // epsilon for convergence test float eps_g; // epsilon for convergence test } adam; // LBFGS parameters struct { int m; // number of corrections to approximate the inv. Hessian int n_iter; int max_linesearch; float eps; // convergence tolerance float ftol; // line search tolerance float wolfe; float min_step; float max_step; enum ggml_linesearch linesearch; } lbfgs; }; struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); // optimize the function defined by the tensor f enum ggml_opt_result ggml_opt( struct ggml_context * ctx, struct ggml_opt_params params, struct ggml_tensor * f); // // quantization // size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist); size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist); // // system info // int ggml_cpu_has_avx(void); int ggml_cpu_has_avx2(void); int ggml_cpu_has_avx512(void); int ggml_cpu_has_fma(void); int ggml_cpu_has_neon(void); int ggml_cpu_has_arm_fma(void); int ggml_cpu_has_f16c(void); int ggml_cpu_has_fp16_va(void); int ggml_cpu_has_wasm_simd(void); int ggml_cpu_has_blas(void); int ggml_cpu_has_sse3(void); int ggml_cpu_has_vsx(void); #ifdef __cplusplus } #endif