#include <cstddef> #include <cstdint> #include <stdint.h> #include <stdio.h> #include <atomic> #include <cuda_runtime.h> #include <cublas_v2.h> #include <cuda_fp16.h> #include "ggml-cuda.h" #include "ggml.h" static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); #define CUDA_CHECK(err) \ do { \ cudaError_t err_ = (err); \ if (err_ != cudaSuccess) { \ fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ cudaGetErrorString(err_)); \ exit(1); \ } \ } while (0) #define CUBLAS_CHECK(err) \ do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream); // QK = number of values after dequantization // QR = QK / number of values before dequantization #define QK4_0 32 #define QR4_0 2 typedef struct { float d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); #define QK4_1 32 #define QR4_1 2 typedef struct { float d; // delta float m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); #define QK5_0 32 #define QR5_0 2 typedef struct { half d; // delta uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_0 / 2]; // nibbles / quants } block_q5_0; static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); #define QK5_1 32 #define QR5_1 2 typedef struct { half d; // delta half m; // min uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_1 / 2]; // nibbles / quants } block_q5_1; static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); #define QK8_0 32 #define QR8_0 1 typedef struct { float d; // delta int8_t qs[QK8_0]; // quants } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 #define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q4_0 * x = (const block_q4_0 *) vx; const float d = x[ib].d; const uint8_t vui = x[ib].qs[iqs]; const int8_t vi0 = vui & 0xF; const int8_t vi1 = vui >> 4; v0 = (vi0 - 8)*d; v1 = (vi1 - 8)*d; } static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q4_1 * x = (const block_q4_1 *) vx; const float d = x[ib].d; const float m = x[ib].m; const uint8_t vui = x[ib].qs[iqs]; const int8_t vi0 = vui & 0xF; const int8_t vi1 = vui >> 4; v0 = vi0*d + m; v1 = vi1*d + m; } static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q5_0 * x = (const block_q5_0 *) vx; const float d = x[ib].d; uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; v0 = x0*d; v1 = x1*d; } static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q5_1 * x = (const block_q5_1 *) vx; const float d = x[ib].d; const float m = x[ib].m; uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); v0 = x0*d + m; v1 = x1*d + m; } static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q8_0 * x = (const block_q8_0 *) vx; const float d = x[ib].d; const int8_t vi0 = x[ib].qs[iqs + 0]; const int8_t vi1 = x[ib].qs[iqs + 1]; v0 = vi0*d; v1 = vi1*d; } static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const half * x = (const half *) vx; v0 = __half2float(x[ib + 0]); v1 = __half2float(x[ib + 1]); } template <int qk, int qr, dequantize_kernel_t dequantize_kernel> static __global__ void dequantize_block(const void * vx, float * y, const int k) { const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; if (i >= k) { return; } const int ib = i/qk; // block index const int iqs = (i%qk)/qr; // quant index const int iybs = i - i%qk; // y block start index const int y_offset = qr == 1 ? 1 : qk/2; // dequantize float & v0 = y[iybs + iqs + 0]; float & v1 = y[iybs + iqs + y_offset]; dequantize_kernel(vx, ib, iqs, v0, v1); } template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel> static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) { const int row = blockIdx.x; const int tid = threadIdx.x; const int y_offset = qr == 1 ? 1 : qk/2; __shared__ float tmp[block_size]; // separate sum for each thread tmp[tid] = 0; for (int i = 0; i < ncols/block_size; i += 2) { const int col = i*block_size + 2*tid; const int ib = (row*ncols + col)/qk; // block index const int iqs = (col%qk)/qr; // quant index const int iybs = col - col%qk; // y block start index // dequantize float v0, v1; dequantize_kernel(vx, ib, iqs, v0, v1); // matrix multiplication tmp[tid] += v0 * y[iybs + iqs + 0]; tmp[tid] += v1 * y[iybs + iqs + y_offset]; } // sum up partial sums and write back result __syncthreads(); for (int s=block_size/2; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } __syncthreads(); } if (tid == 0) { dst[row] = tmp[0]; } } static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_0, QR4_0, dequantize_q4_0> <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_1, QR4_1, dequantize_q4_1> <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_0, QR5_0, dequantize_q5_0> <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_1, QR5_1, dequantize_q5_1> <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); } static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK8_0, QR8_0, dequantize_q8_0> <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); } static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); } static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, 32, 1, convert_f16> <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); } static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_row_q5_0_cuda; case GGML_TYPE_Q5_1: return dequantize_row_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_row_q8_0_cuda; case GGML_TYPE_F16: return convert_fp16_to_fp32_cuda; default: return nullptr; } } static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_mul_mat_vec_q4_0_cuda; case GGML_TYPE_Q4_1: return dequantize_mul_mat_vec_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_mul_mat_vec_q5_0_cuda; case GGML_TYPE_Q5_1: return dequantize_mul_mat_vec_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_mul_mat_vec_q8_0_cuda; case GGML_TYPE_F16: return convert_mul_mat_vec_f16_cuda; default: return nullptr; } } // buffer pool for cuda #define MAX_CUDA_BUFFERS 256 struct scoped_spin_lock { std::atomic_flag& lock; scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { while (lock.test_and_set(std::memory_order_acquire)) { ; // spin } } ~scoped_spin_lock() { lock.clear(std::memory_order_release); } scoped_spin_lock(const scoped_spin_lock&) = delete; scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; }; struct cuda_buffer { void * ptr = nullptr; size_t size = 0; }; static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { cuda_buffer& b = g_cuda_buffer_pool[i]; if (b.size >= size && b.ptr != nullptr) { void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; return ptr; } } void * ptr; CUDA_CHECK(cudaMalloc((void **) &ptr, size)); *actual_size = size; return ptr; } static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { cuda_buffer& b = g_cuda_buffer_pool[i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; return; } } fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); CUDA_CHECK(cudaFree(ptr)); } #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication. #define GGML_CUDA_MAX_EVENTS 64 static cublasHandle_t g_cublasH = nullptr; static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr }; static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr }; static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr }; void ggml_init_cublas() { if (g_cublasH == nullptr) { // create streams for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking)); CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking)); } // create events for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming)); } // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublasH)); CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH)); // configure logging to stdout // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); } } void * ggml_cuda_host_malloc(size_t size) { if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { return nullptr; } void * ptr = nullptr; cudaError_t err = cudaMallocHost((void **) &ptr, size); if (err != cudaSuccess) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", size/1024.0/1024.0, cudaGetErrorString(err)); return nullptr; } return ptr; } void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); } static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { const uint64_t ne0 = src->ne[0]; const uint64_t ne1 = src->ne[1]; const uint64_t nb0 = src->nb[0]; const uint64_t nb1 = src->nb[1]; const uint64_t nb2 = src->nb[2]; const uint64_t nb3 = src->nb[3]; const enum ggml_type type = src->type; const size_t ts = ggml_type_size(type); const size_t bs = ggml_blck_size(type); const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); if (nb0 == ts && nb1 == ts*ne0/bs) { return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); } else if (nb0 == ts) { return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { const void * rx = (const void *) ((const char *) x + i1*nb1); void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); // pretend the row is a matrix with cols=1 cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); if (r != cudaSuccess) return r; } return cudaSuccess; } } static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; const float alpha = 1.0f; const float beta = 0.0f; const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; const int n_mm = ne03 * ne02; size_t x_size, y_size, d_size; float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { int i = i03*ne02 + i02; cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; float * c_X = d_X + i * x_ne; float * c_Y = d_Y + i * y_ne; float * c_D = d_D + i * d_ne; // copy data to device CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); // compute CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); CUBLAS_CHECK( cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, &alpha, c_X, ne00, c_Y, ne10, &beta, c_D, ne01)); // copy dst to host float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); } } CUDA_CHECK(cudaDeviceSynchronize()); ggml_cuda_pool_free(d_X, x_size); ggml_cuda_pool_free(d_Y, y_size); ggml_cuda_pool_free(d_D, d_size); } static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int nb10 = src1->nb[0]; const int nb11 = src1->nb[1]; const int nb12 = src1->nb[2]; const int nb13 = src1->nb[3]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; const float alpha = 1.0f; const float beta = 0.0f; const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; const int n_mm = ne03 * ne02; size_t x_size, y_size, d_size; half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size); half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size); float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); bool src1_cont_rows = nb10 == sizeof(float); bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { int i = i03*ne02 + i02; cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; half * c_X = d_X + i * x_ne; half * c_Y = d_Y + i * y_ne; float * c_D = d_D + i * d_ne; // copy src0 to device CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); // convert src1 to fp16 // TODO: use multiple threads ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; if (src1_cont_rows) { if (src1_cont_cols) { ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); } else { for (int64_t i01 = 0; i01 < ne11; i01++) { ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); } } } else { for (int64_t i01 = 0; i01 < ne11; i01++) { for (int64_t i00 = 0; i00 < ne10; i00++) { // very slow due to no inlining tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); } } } // copy src1 to device CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream)); // compute CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); CUBLAS_CHECK( cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, &alpha, c_X, CUDA_R_16F, ne00, c_Y, CUDA_R_16F, ne10, &beta, c_D, CUDA_R_32F, ne01, CUBLAS_COMPUTE_32F_FAST_16F, CUBLAS_GEMM_DEFAULT)); // copy dst to host float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); } } CUDA_CHECK(cudaDeviceSynchronize()); ggml_cuda_pool_free(d_X, x_size); ggml_cuda_pool_free(d_Y, y_size); ggml_cuda_pool_free(d_D, d_size); } static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; const ggml_type type = src0->type; const bool mul_mat_vec = ne11 == 1; const float alpha = 1.0f; const float beta = 0.0f; const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; const int n_mm = ne03 * ne02; const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); size_t x_size, y_size, d_size, q_size; float * d_X = nullptr; if (!mul_mat_vec) { d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); } float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type); dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type); GGML_ASSERT(to_fp32_cuda != nullptr); for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { int i = i03*ne02 + i02; cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS]; cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS]; float * c_Y = d_Y + i * y_ne; float * c_D = d_D + i * d_ne; char * c_Q = d_Q + i * q_sz; // copy src0 to device if necessary if (src0->backend == GGML_BACKEND_CPU) { CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2)); } else if (src0->backend == GGML_BACKEND_CUDA) { c_Q = ((char *) src0->data) + i * q_sz; } else { GGML_ASSERT(false); } if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); // copy src1 to device CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); // wait for data CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); // compute dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream); CUDA_CHECK(cudaGetLastError()); } else { // general dequantization kernel + cuBLAS matrix matrix multiplication float * c_X = d_X + i * x_ne; // convert src0 to fp32 on device to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); // copy src1 to device CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); // wait for conversion CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); // compute CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); CUBLAS_CHECK( cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, &alpha, c_X, ne00, c_Y, ne10, &beta, c_D, ne01)); } // copy dst to host float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); } } CUDA_CHECK(cudaDeviceSynchronize()); if (!mul_mat_vec) { ggml_cuda_pool_free(d_X, x_size); } ggml_cuda_pool_free(d_Y, y_size); ggml_cuda_pool_free(d_D, d_size); ggml_cuda_pool_free(d_Q, q_size); } bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) { return true; } return false; } bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { size_t src0_sz = ggml_nbytes(src0); size_t src1_sz = ggml_nbytes(src1); // mul_mat_q: src0 is converted to fp32 on device size_t mul_mat_q_transfer = src0_sz + src1_sz; // mul_mat_f16: src1 is converted to fp16 on cpu size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1); // choose the smaller one to transfer to the device // TODO: this is not always the best choice due to the overhead of converting to fp16 return mul_mat_f16_transfer < mul_mat_q_transfer; } void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst)); if (src0->type == GGML_TYPE_F32) { ggml_cuda_mul_mat_f32(src0, src1, dst); } else if (src0->type == GGML_TYPE_F16) { if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize); } else { ggml_cuda_mul_mat_q_f32(src0, src1, dst); } } else if (ggml_is_quantized(src0->type)) { ggml_cuda_mul_mat_q_f32(src0, src1, dst); } else { GGML_ASSERT(false); } } size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { return ggml_nelements(src1) * sizeof(ggml_fp16_t); } else { return 0; } } void ggml_cuda_transform_tensor(ggml_tensor * tensor) { const int64_t ne0 = tensor->ne[0]; const int64_t ne1 = tensor->ne[1]; const int64_t ne2 = tensor->ne[2]; const int64_t ne3 = tensor->ne[3]; const ggml_type type = tensor->type; const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); size_t q_size; char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size); cudaStream_t cudaStream2 = g_cudaStreams2[0]; // copy tensor to device CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2)); CUDA_CHECK(cudaDeviceSynchronize()); tensor->data = d_Q; tensor->backend = GGML_BACKEND_CUDA; }