#include "ggml.h" #define LLAMA_API_INTERNAL #include "llama.h" #include <algorithm> #include <cassert> #include <cinttypes> #include <cmath> #include <cstdio> #include <cstring> #include <map> #include <numeric> #include <regex> #include <string> #include <unordered_map> #include <vector> struct quantize_stats_params { std::string model = "models/7B/ggml-model-f16.bin"; bool verbose = false; bool per_layer_stats = false; bool print_histogram = false; bool reference = false; std::vector<std::string> include_layers; std::vector<std::string> exclude_layers; std::vector<enum ggml_type> include_types; }; const int64_t SCRATCH_ELEMENTS = 32*32; const size_t HISTOGRAM_BUCKETS = 150; const double HISTOGRAM_RANGE = 0.03; struct error_stats { size_t num_samples; double total_error; double max_error; uint64_t error_histogram[HISTOGRAM_BUCKETS]; }; void quantize_stats_print_usage(int /*argc*/, char ** argv) { quantize_stats_params params; fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -r, --reference\n"); fprintf(stderr, " use reference implementation (default: false)\n"); fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " verbose output (default: false)\n"); fprintf(stderr, " -p, --per-layer-stats\n"); fprintf(stderr, " print stats per layer (default: false)\n"); fprintf(stderr, " --histogram\n"); fprintf(stderr, " print error histogram (default: false)\n"); fprintf(stderr, " -l LAYER, --include-layer LAYER\n"); fprintf(stderr, " only test layers matching pattern\n"); fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n"); fprintf(stderr, " exclude layers matching pattern\n"); fprintf(stderr, " -t TYPE, --type TYPE\n"); fprintf(stderr, " only test given type (q4_0, q4_1)\n"); fprintf(stderr, "\n"); } // Check if a layer is included/excluded by command line bool layer_included(const quantize_stats_params params, const std::string & layer) { for (const auto& excluded : params.exclude_layers) { if (std::regex_search(layer, std::regex(excluded))) { return false; } } for (const auto& included : params.include_layers) { if (std::regex_search(layer, std::regex(included))) { return true; } } return params.include_layers.empty(); } // Update error statistics given vectors with the before/after result of quantization void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) { for (int64_t i = 0; i < nelements; i++) { double diff = input[i] - output[i]; stats.total_error += diff * diff; stats.max_error = fmax(fabs(diff), stats.max_error); stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++; } stats.num_samples += nelements; } double find_quantile(const error_stats & stats, double quantile) { double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0); double accum = 0; for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) { accum += stats.error_histogram[i]; if (accum >= sum*quantile) { return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; } } return INFINITY; } void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) { double rmse = sqrt(stats.total_error / (double) stats.num_samples); double median = find_quantile(stats, .5); double pct95 = find_quantile(stats, .95); printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median); if (print_histogram) { printf("Error distribution:\n"); for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) { double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY; printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]); } } } // copied from ggml.h - verify that we can access this as a flat array static bool tensor_is_contiguous(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->nb[0] == ggml_type_size(tensor->type) && tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } // Run quantization function for a single layer and update error stats void test_roundtrip_on_layer( std::string & name, bool print_layer_stats, const quantize_fns_t & qfns, bool use_reference, const ggml_tensor * layer, float * input_scratch, char *quantized_scratch, float * output_scratch, error_stats & total_error) { assert(tensor_is_contiguous(layer)); error_stats layer_error {}; int64_t nelements = ggml_nelements(layer); for (int64_t offset = 0; offset < nelements; offset += SCRATCH_ELEMENTS) { int64_t chunk_size = std::min(SCRATCH_ELEMENTS, nelements - offset); if (layer->type == GGML_TYPE_F16) { for (int i = 0; i < chunk_size; i++) { input_scratch[i] = ggml_get_f32_1d(layer, i + offset); } } else { input_scratch = ggml_get_data_f32(layer) + offset; } if (use_reference) { qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size); } else { qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size); } qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size); update_error_stats(chunk_size, input_scratch, output_scratch, total_error); if (print_layer_stats) { update_error_stats(chunk_size, input_scratch, output_scratch, layer_error); } } if (print_layer_stats) { print_error_stats(name, layer_error, false); } } int main(int argc, char ** argv) { ggml_time_init(); quantize_stats_params params; // read command line bool invalid_param = false; std::string arg; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "-h" || arg == "--help") { quantize_stats_print_usage(argc, argv); exit(0); } else if (arg == "-r" || arg == "--reference") { params.reference = true; } else if (arg == "-v") { params.verbose = true; } else if (arg == "-p" || arg == "--per-layer-stats") { params.per_layer_stats = true; } else if (arg == "--histogram") { params.print_histogram = true; } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } params.model = argv[i]; } else if (arg == "-l" || arg == "--include-layer") { if (++i >= argc) { invalid_param = true; break; } params.include_layers.push_back(argv[i]); } else if (arg == "-L" || arg == "--exclude-layer") { if (++i >= argc) { invalid_param = true; break; } params.exclude_layers.push_back(argv[i]); } else if (arg == "-t" || arg == "--type") { if (++i >= argc) { invalid_param = true; break; } int j; for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) j)) != 0; j++) { // find match } if (j < GGML_TYPE_COUNT) { params.include_types.push_back((ggml_type) j); } else { fprintf(stderr, "error: %s not in list of types\n", argv[i]); invalid_param = true; } } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); quantize_stats_print_usage(argc, argv); return 1; } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); quantize_stats_print_usage(argc, argv); return 1; } // load the model fprintf(stderr, "Loading model\n"); const int64_t t_main_start_us = ggml_time_us(); llama_context * ctx; { auto lparams = llama_context_default_params(); lparams.n_ctx = 256; lparams.n_parts = 1; lparams.seed = 1; lparams.f16_kv = false; lparams.use_mlock = false; ctx = llama_init_from_file(params.model.c_str(), lparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return 1; } } const auto &tensors = llama_internal_get_tensor_map(ctx); // check layer tensors int included_layers = 0; int64_t max_nelements = 0; bool is_f16 = false; for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { continue; } if (params.verbose) { printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second)); } if (kv_tensor.second->type == GGML_TYPE_F16) { is_f16 = true; } else if (kv_tensor.second->type != GGML_TYPE_F32) { fprintf(stderr, "%s: error: Quantization should be tested with a float model, " "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type); llama_free(ctx); return 1; } included_layers++; max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second)); } if (is_f16) { printf("note: source model is f16\n"); } printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements); // allocate scratch space std::vector<float> input_scratch(SCRATCH_ELEMENTS); std::vector<char> quantized_scratch(SCRATCH_ELEMENTS*4); std::vector<float> output_scratch(SCRATCH_ELEMENTS); // loop throught quantization types for (int i = 0; i < GGML_TYPE_COUNT; i++) { const ggml_type type = (ggml_type) i; if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { continue; } quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (params.verbose) { printf("testing %s ...\n", ggml_type_name(type)); } error_stats global_stats {}; for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { continue; } if (params.verbose) { printf(" %s ...\n", kv_tensor.first.c_str()); } std::string layer_name { ggml_type_name(type) }; layer_name += "::" + kv_tensor.first; test_roundtrip_on_layer( layer_name, params.per_layer_stats, qfns, params.reference, kv_tensor.second, input_scratch.data(), quantized_scratch.data(), output_scratch.data(), global_stats ); } print_error_stats(ggml_type_name(type), global_stats, params.print_histogram); } } llama_free(ctx); // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n"); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); } return 0; }