#include "common.h" #include "llama.h" #include "build-info.h" #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) max_logit = std::max(max_logit, v); double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; return probs; } void perplexity(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval auto tokens = ::llama_tokenize(ctx, params.prompt, true); int count = 0; const int n_chunk = tokens.size() / params.n_ctx; const int n_vocab = llama_n_vocab(ctx); const int n_batch = params.n_batch; double nll = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.n_ctx; const int end = start + params.n_ctx; const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (j == 0) { tokens[batch_start] = llama_token_bos(); } if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%d minutes\n", total_seconds / 60); } // We get the logits for all the tokens in the context window (params.n_ctx) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half of the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[tokens[start + j + 1]]; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); fflush(stdout); } printf("\n"); } int main(int argc, char ** argv) { gpt_params params; params.n_batch = 512; if (gpt_params_parse(argc, argv, params) == false) { return 1; } params.perplexity = true; params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.n_ctx > 2048) { fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" "expect poor results\n", __func__, params.n_ctx); } fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_init_backend(params.numa); llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); } perplexity(ctx, params); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_finalize_backend(); return 0; }