#include "common.h" #include "llama.h" #include <cmath> #include <cstdio> #include <string> #include <vector> struct ngram_data { bool active = false; llama_seq_id seq_id = -1; std::vector<int> i_batch; std::vector<llama_token> tokens; }; // n-gram container struct ngram_container { ngram_container(int n_vocab, int N, int G) { cnt.resize(n_vocab); head.resize(n_vocab); tokens.resize(n_vocab * G * (N - 1)); } int n_total = 0; std::vector<int> cnt; std::vector<int> head; // [n_vocab][G][N - 1] // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1 std::vector<llama_token> tokens; }; int main(int argc, char ** argv) { gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } const int W = 15; // lookahead window const int N = 5; // n-gram size const int G = 15; // max verification n-grams const bool dump_kv_cache = params.dump_kv_cache; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("lookahead", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); llama_model * model = NULL; llama_context * ctx = NULL; // load the target model std::tie(model, ctx) = llama_init_from_gpt_params(params); // Tokenize the prompt const bool add_bos = llama_should_add_bos_token(model); LOG("add_bos tgt: %d\n", add_bos); std::vector<llama_token> inp; std::vector<llama_token> all; inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); all = inp; const int max_context_size = llama_n_ctx(ctx); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } fprintf(stderr, "\n\n"); for (auto id : inp) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); } fflush(stderr); const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); // eval the prompt llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); for (int s = 1; s < W + G + 1; ++s) { llama_kv_cache_seq_cp(ctx, 0, s, -1, -1); } const auto t_enc_end = ggml_time_us(); int n_predict = 0; int n_accept = 0; int n_past = inp.size(); llama_token id = 0; // used to determine end of generation bool has_eos = false; // for each decoded batch, we have at most W + G + 1 distinct sequences: // seq_id == 0 : the current input token // seq_id [1, W] : tokens from the past N - 1 Jacobi iterations // seq_id [W + 1, W + G] : verification n-grams llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1); // target model sampling context struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams); // verification n-grams std::vector<ngram_data> ngrams_cur(G); // tokens for the past N - 1 Jacobi iterations std::vector<llama_token> tokens_j_prev(W); std::vector<std::vector<llama_token>> tokens_j(N - 1); for (int j = 0; j < N - 1; j++) { tokens_j[j].resize(W); for (int i = 0; i < W; i++) { // there are different ways to init these tokens if (0) { // initialize randomly from the prompt tokens tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; } else { // initialize with a sequence of increasing numbers tokens_j[j][i] = 100 + i; } } } std::vector<llama_seq_id> seq_id_look; // the input token belongs both to all sequences std::vector<llama_seq_id> seq_id_all(W + G + 1); for (int i = 0; i < W + G + 1; i++) { seq_id_all[i] = i; } // here we keep adding new n-grams as we go ngram_container ngrams_observed(llama_n_vocab(model), N, G); // debug struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1); const auto t_dec_start = ggml_time_us(); // sample first token { id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0); llama_sampling_accept(ctx_sampling, ctx, id, true); { const std::string token_str = llama_token_to_piece(ctx, id); printf("%s", token_str.c_str()); fflush(stdout); } } while (true) { // debug if (dump_kv_cache) { llama_kv_cache_view_update(ctx, &kvc_view); dump_kv_cache_view_seqs(kvc_view, 40); } // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/ // // Example for W = 5, N = 4, G = 2: // (I = input, L = lookahead, V = verification) // // Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 // T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0 // Info: I L L L L L L L L L L L L L L V V V V V V // Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past) // Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 // --------------------------------------------------------------------- // Seq: 0 // 1 1 1 // 2 2 2 2 // 3 3 3 3 3 // 4 4 4 4 4 4 // 5 5 5 5 5 5 5 // 6 6 6 6 // 7 7 7 7 // --------------------------------------------------------------------- // | | | | | | | | | | | // V V V V V | | | | | | // j_tokens | | | | | | // V V V V V V // id { llama_batch_clear(batch); // current token - first token of the first level llama_batch_add(batch, id, n_past, seq_id_all, true); // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation { const int g_cur = ngrams_observed.cnt[id]; ngrams_cur.resize(g_cur); for (int g = 0; g < g_cur; g++) { ngrams_cur[g].active = true; ngrams_cur[g].tokens.resize(N); ngrams_cur[g].i_batch.resize(N); ngrams_cur[g].seq_id = W + 1 + g; ngrams_cur[g].i_batch[0] = 0; ngrams_cur[g].tokens [0] = id; } for (int j = 0; j < N - 1; j++) { for (int g = 0; g < g_cur; g++) { const int idx = id*(N - 1)*G + g*(N - 1); const llama_token t = ngrams_observed.tokens[idx + j]; ngrams_cur[g].tokens [j + 1] = t; ngrams_cur[g].i_batch[j + 1] = batch.n_tokens; llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true); } } } // fill the remaining W - 1 tokens for the first level for (int i = 1; i < W; i++) { seq_id_look.resize(W - i); for (int j = 0; j < W - i; j++) { seq_id_look[j] = i + j + 1; } llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false); } // fill the rest of the levels for (int j = 1; j < N - 1; j++) { for (int i = 0; i < W; i++) { llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2); } } } if (llama_decode(ctx, batch) != 0) { fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__); return 1; } int seq_id_best = 0; for (int v = 0; v < N; ++v) { int i_batch = 0; // if no active ngrams are left, it means the sampled token does not pass the verification if (v > 0) { for (int g = 0; g < (int) ngrams_cur.size(); g++) { if (ngrams_cur[g].active) { i_batch = ngrams_cur[g].i_batch[v]; seq_id_best = ngrams_cur[g].seq_id; ++n_accept; break; } } // no more matches -> create a new batch if (i_batch == 0) { break; } } // sample the next token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch); llama_sampling_accept(ctx_sampling, ctx, id, true); // print { const std::string token_str = llama_token_to_piece(ctx, id); if (v == 0) { printf("%s", token_str.c_str()); } else { // print light cyan printf("\033[0;96m%s\033[0m", token_str.c_str()); } fflush(stdout); if (id == llama_token_eos(model)) { has_eos = true; } all.push_back(id); } ++n_predict; ++n_past; if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { break; } // verify across active n-grams for (int g = 0; g < (int) ngrams_cur.size(); g++) { if (ngrams_cur[g].active) { if (v == N - 1) { ngrams_cur[g].active = false; } else { if (id != ngrams_cur[g].tokens[v + 1]) { ngrams_cur[g].active = false; } } } } // print known n-grams starting with token id (debug) if (0 && v == 0) { if (ngrams_observed.cnt[id] > 0) { printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str()); } for (int i = 0; i < ngrams_observed.cnt[id]; i++) { printf(" - ngram %2d: ", i); const int idx = id*(N - 1)*G + i*(N - 1); for (int j = 0; j < N - 1; j++) { const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]); printf("%s", token_str.c_str()); } printf("\n"); } } // update lookahead tokens { for (int i = 0; i < W; i++) { tokens_j_prev[i] = tokens_j[0][i]; } for (int j = 0; j < N - 2; j++) { tokens_j[j] = tokens_j[j + 1]; } if (v == 0) { // sample from the last level for (int i = 0; i < W; i++) { tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i); } } else { for (int i = 0; i < W; i++) { // there are different ways to init these tokens if (0) { // random init tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)]; } else { // init from the previous level tokens_j[N - 2][i] = tokens_j[0][i]; } } } } // update observed ngrams if (v == 0) { // the first token of the n-gram is determined by the index in the container so it is not stored std::vector<llama_token> ngram(N - 1); // n-gram generation // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518 for (int f = 0; f < W; ++f) { const int ft = tokens_j_prev[f]; // first token of the n-gram for (int j = 0; j < N - 1; ++j) { ngram[j] = tokens_j[j][f]; } // filter-out repeating n-grams { bool is_unique = true; for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) { const int idx = ft*(N - 1)*G + k*(N - 1); bool is_match = true; for (int j = 0; j < N - 1; ++j) { if (ngrams_observed.tokens[idx + j] != ngram[j]) { is_match = false; break; } } if (is_match) { is_unique = false; break; } } if (!is_unique) { continue; } } const int head = ngrams_observed.head[ft]; const int idx = ft*(N - 1)*G + head*(N - 1); for (int i = 0; i < N - 1; i++) { ngrams_observed.tokens[idx + i] = ngram[i]; } ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1); ngrams_observed.head[ft] = (head + 1) % G; ngrams_observed.n_total++; } } } if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { break; } // KV cache management // if no verification token matched, we simply remove all cells from this batch -> no fragmentation llama_kv_cache_seq_rm(ctx, -1, n_past, -1); if (seq_id_best != 0) { // if a verification token matched, we keep the best sequence and remove the rest // this leads to some KV cache fragmentation llama_kv_cache_seq_keep(ctx, seq_id_best); llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1); llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1); for (int s = 1; s < W + G + 1; ++s) { llama_kv_cache_seq_cp(ctx, 0, s, -1, -1); } } } auto t_dec_end = ggml_time_us(); LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("\n"); LOG_TEE("W = %2d\n", W); LOG_TEE("N = %2d\n", N); LOG_TEE("G = %2d\n", G); LOG_TEE("\n"); LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_accept = %d\n", n_accept); llama_print_timings(ctx); llama_kv_cache_view_free(&kvc_view); llama_sampling_free(ctx_sampling); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }