#include "common.h" #include "llama.h" #include #include #include #include int main(int argc, char ** argv) { gpt_params params; if (argc == 1 || argv[1][0] == '-') { printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]); return 1 ; } int seed = -1; int n_junk = 250; // number of times to repeat the junk text int n_keep = 32; // number of tokens in the prompt prefix int n_grp = 1; // if more than 1 - perform LongLM SelfExtend int i_pos = -1; // position of the passkey in the junk text if (argc >= 2) { params.model = argv[1]; } if (argc >= 3) { n_junk = std::stoi(argv[2]); } if (argc >= 4) { n_grp = std::stoi(argv[3]); } if (argc >= 5) { i_pos = std::stoi(argv[4]); } if (argc >= 6) { seed = std::stoi(argv[5]); } if (seed == -1) { seed = time(NULL); } srand(seed); if (i_pos == -1) { i_pos = rand() % n_junk; } const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there."; const std::string prompt_suffix = " What is the pass key? The pass key is"; // generate junk text params.prompt = prompt_prefix; const int passkey = rand() % 50000 + 1; for (int i = 0; i < n_junk; i++) { if (i % n_junk == i_pos) { params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key."; } params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again."; } params.prompt += prompt_suffix; // init LLM llama_backend_init(); llama_numa_init(params.numa); // initialize the model llama_model_params model_params = llama_model_default_params(); model_params.n_gpu_layers = 99; // offload all layers to the GPU llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // initialize the context llama_context_params ctx_params = llama_context_default_params(); ctx_params.seed = seed; ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep; ctx_params.n_batch = 512; ctx_params.n_threads = params.n_threads; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp"); llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } // tokenize the prompt std::vector tokens_list; tokens_list = ::llama_tokenize(ctx, params.prompt, true); // tokenize the prefix and use it as a sink const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size(); const int n_tokens_all = tokens_list.size(); // we leave a margin of 16 tokens for the generated text - it should contain just the passkey const int n_predict = 16; // total length of the sequences including the prompt const int n_len = n_tokens_all + n_predict; const int n_ctx = llama_n_ctx(ctx) - n_keep; const int n_kv_req = llama_n_ctx(ctx); const int n_batch = ctx_params.n_batch; const int n_batch_grp = ctx_params.n_batch/n_grp; LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch); // print the prompt token-by-token LOG_TEE("\n"); LOG_TEE("prefix tokens: %d\n", n_tokens_prefix); LOG_TEE("prompt tokens: %d\n", n_tokens_all); //LOG_TEE("prompt: %s\n", params.prompt.c_str()); llama_batch batch = llama_batch_init(512, 0, 1); int n_past = 0; // fill the KV cache for (int i = 0; i < n_ctx; i += n_batch) { if (i > 0 && n_grp > 1) { // if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp const int ib = i/n_batch - 1; const int bd = n_batch_grp*(n_grp - 1); llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd); llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp); n_past -= bd; } llama_batch_clear(batch); for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) { llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false); } if (i + n_batch >= n_tokens_all) { batch.logits[batch.n_tokens - 1] = true; } if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all)); if (i + n_batch >= n_tokens_all) { break; } } for (int i = n_ctx; i < n_tokens_all; i += n_batch) { const int n_discard = n_batch; LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard); llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); n_past -= n_discard; llama_batch_clear(batch); for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) { llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false); } if (i + n_batch >= n_tokens_all) { batch.logits[batch.n_tokens - 1] = true; } if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all)); } { const int n_discard = n_past - n_ctx + n_predict; if (n_discard > 0) { LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard); llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard); llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); n_past -= n_discard; } } LOG_TEE("\n"); LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk); LOG_TEE("\n"); // main loop int n_cur = n_tokens_all; int n_decode = 0; LOG_TEE("%s", prompt_suffix.c_str()); fflush(stdout); const auto t_main_start = ggml_time_us(); while (n_cur <= n_len) { // sample the next token { auto n_vocab = llama_n_vocab(model); auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; // sample the most likely token const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // is it an end of stream? if (new_token_id == llama_token_eos(model) || n_cur == n_len) { LOG_TEE("\n"); break; } LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); fflush(stdout); n_decode += 1; // prepare the next batch llama_batch_clear(batch); // push this new token for next evaluation llama_batch_add(batch, new_token_id, n_past++, { 0 }, true); } n_cur += 1; // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } } LOG_TEE("\n"); const auto t_main_end = ggml_time_us(); LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); llama_print_timings(ctx); fprintf(stderr, "\n"); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }