#pragma once #include #include #include #include #include #include #include "json.hpp" #include "../llava/clip.h" using json = nlohmann::json; extern bool server_verbose; #ifndef SERVER_VERBOSE #define SERVER_VERBOSE 1 #endif #if SERVER_VERBOSE != 1 #define LOG_VERBOSE(MSG, ...) #else #define LOG_VERBOSE(MSG, ...) \ do \ { \ if (server_verbose) \ { \ server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \ } \ } while (0) #endif #define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) // // parallel // enum server_state { SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet SERVER_STATE_READY, // Server is ready and model is loaded SERVER_STATE_ERROR // An error occurred, load_model failed }; enum task_type { TASK_TYPE_COMPLETION, TASK_TYPE_CANCEL, TASK_TYPE_NEXT_RESPONSE }; struct task_server { int id = -1; // to be filled by llama_server_queue int target_id; task_type type; json data; bool infill_mode = false; bool embedding_mode = false; int multitask_id = -1; }; struct task_result { int id; int multitask_id = -1; bool stop; bool error; json result_json; }; struct task_multi { int id; std::set subtasks_remaining{}; std::vector results{}; }; // TODO: can become bool if we can't find use of more states enum slot_state { IDLE, PROCESSING, }; enum slot_command { NONE, LOAD_PROMPT, RELEASE, }; struct slot_params { bool stream = true; bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt uint32_t seed = -1; // RNG seed int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_predict = -1; // new tokens to predict std::vector antiprompt; json input_prefix; json input_suffix; }; struct slot_image { int32_t id; bool request_encode_image = false; float * image_embedding = nullptr; int32_t image_tokens = 0; clip_image_u8 * img_data; std::string prefix_prompt; // before of this image }; // completion token output with probabilities struct completion_token_output { struct token_prob { llama_token tok; float prob; }; std::vector probs; llama_token tok; std::string text_to_send; }; static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) { nlohmann::ordered_json log { {"timestamp", time(nullptr)}, {"level", level}, {"function", function}, {"line", line}, {"message", message}, }; if (!extra.empty()) { log.merge_patch(extra); } const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); printf("%.*s\n", (int)str.size(), str.data()); fflush(stdout); } // // server utils // template static T json_value(const json &body, const std::string &key, const T &default_value) { // Fallback null to default value return body.contains(key) && !body.at(key).is_null() ? body.value(key, default_value) : default_value; } inline std::string format_llama2(std::vector messages) { std::ostringstream output; bool is_inside_turn = false; for (auto it = messages.begin(); it != messages.end(); ++it) { if (!is_inside_turn) { output << "[INST] "; } std::string role = json_value(*it, "role", std::string("user")); std::string content = json_value(*it, "content", std::string("")); if (role == "system") { output << "<>\n" << content << "\n<>\n\n"; is_inside_turn = true; } else if (role == "user") { output << content << " [/INST]"; is_inside_turn = true; } else { output << " " << content << " "; is_inside_turn = false; } } LOG_VERBOSE("format_llama2", {{"text", output.str()}}); return output.str(); } inline std::string format_chatml(std::vector messages) { std::ostringstream chatml_msgs; for (auto it = messages.begin(); it != messages.end(); ++it) { chatml_msgs << "<|im_start|>" << json_value(*it, "role", std::string("user")) << '\n'; chatml_msgs << json_value(*it, "content", std::string("")) << "<|im_end|>\n"; } chatml_msgs << "<|im_start|>assistant" << '\n'; LOG_VERBOSE("format_chatml", {{"text", chatml_msgs.str()}}); return chatml_msgs.str(); } // // work queue utils // struct llama_server_queue { int id = 0; std::mutex mutex_tasks; bool running; // queues std::vector queue_tasks; std::vector queue_tasks_deferred; std::vector queue_multitasks; std::condition_variable condition_tasks; // callback functions std::function callback_new_task; std::function callback_finish_multitask; std::function callback_all_task_finished; // Add a new task to the end of the queue int post(task_server task) { std::unique_lock lock(mutex_tasks); if (task.id == -1) { task.id = id++; } queue_tasks.push_back(std::move(task)); condition_tasks.notify_one(); return task.id; } // Add a new task, but defer until one slot is available void defer(task_server task) { std::unique_lock lock(mutex_tasks); queue_tasks_deferred.push_back(std::move(task)); } // Get the next id for creating anew task int get_new_id() { std::unique_lock lock(mutex_tasks); return id++; } // Register function to process a new task void on_new_task(std::function callback) { callback_new_task = callback; } // Register function to process a multitask void on_finish_multitask(std::function callback) { callback_finish_multitask = callback; } // Register the function to be called when the batch of tasks is finished void on_all_tasks_finished(std::function callback) { callback_all_task_finished = callback; } // Call when the state of one slot is changed void notify_slot_changed() { // move deferred tasks back to main loop std::unique_lock lock(mutex_tasks); for (auto & task : queue_tasks_deferred) { queue_tasks.push_back(std::move(task)); } queue_tasks_deferred.clear(); } // end the start_loop routine void terminate() { { std::unique_lock lock(mutex_tasks); running = false; } condition_tasks.notify_all(); } // Start the main loop. void start_loop() { running = true; while (true) { // new task arrived LOG_VERBOSE("have new task", {}); { while (true) { std::unique_lock lock(mutex_tasks); if (queue_tasks.empty()) { lock.unlock(); break; } task_server task = queue_tasks.front(); queue_tasks.erase(queue_tasks.begin()); lock.unlock(); LOG_VERBOSE("callback_new_task", {}); callback_new_task(task); } LOG_VERBOSE("callback_all_task_finished", {}); // process and update all the multitasks auto queue_iterator = queue_multitasks.begin(); while (queue_iterator != queue_multitasks.end()) { if (queue_iterator->subtasks_remaining.empty()) { // all subtasks done == multitask is done task_multi current_multitask = *queue_iterator; callback_finish_multitask(current_multitask); // remove this multitask queue_iterator = queue_multitasks.erase(queue_iterator); } else { ++queue_iterator; } } // all tasks in the current loop is finished callback_all_task_finished(); } LOG_VERBOSE("wait for new task", {}); // wait for new task { std::unique_lock lock(mutex_tasks); if (queue_tasks.empty()) { if (!running) { LOG_VERBOSE("ending start_loop", {}); return; } condition_tasks.wait(lock, [&]{ return (!queue_tasks.empty() || !running); }); } } } } // // functions to manage multitasks // // add a multitask by specifying the id of all subtask (subtask is a task_server) void add_multitask(int multitask_id, std::vector& sub_ids) { std::lock_guard lock(mutex_tasks); task_multi multi; multi.id = multitask_id; std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end())); queue_multitasks.push_back(multi); } // updatethe remaining subtasks, while appending results to multitask void update_multitask(int multitask_id, int subtask_id, task_result& result) { std::lock_guard lock(mutex_tasks); for (auto& multitask : queue_multitasks) { if (multitask.id == multitask_id) { multitask.subtasks_remaining.erase(subtask_id); multitask.results.push_back(result); } } } }; struct llama_server_response { typedef std::function callback_multitask_t; callback_multitask_t callback_update_multitask; // for keeping track of all tasks waiting for the result std::set waiting_task_ids; // the main result queue std::vector queue_results; std::mutex mutex_results; std::condition_variable condition_results; void add_waiting_task_id(int task_id) { std::unique_lock lock(mutex_results); waiting_task_ids.insert(task_id); } void remove_waiting_task_id(int task_id) { std::unique_lock lock(mutex_results); waiting_task_ids.erase(task_id); } // This function blocks the thread until there is a response for this task_id task_result recv(int task_id) { while (true) { std::unique_lock lock(mutex_results); condition_results.wait(lock, [&]{ return !queue_results.empty(); }); LOG_VERBOSE("condition_results unblock", {}); for (int i = 0; i < (int) queue_results.size(); i++) { if (queue_results[i].id == task_id) { assert(queue_results[i].multitask_id == -1); task_result res = queue_results[i]; queue_results.erase(queue_results.begin() + i); return res; } } } // should never reach here } // Register the function to update multitask void on_multitask_update(callback_multitask_t callback) { callback_update_multitask = callback; } // Send a new result to a waiting task_id void send(task_result result) { std::unique_lock lock(mutex_results); LOG_VERBOSE("send new result", {}); for (auto& task_id : waiting_task_ids) { // LOG_TEE("waiting task id %i \n", task_id); // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result if (result.multitask_id == task_id) { LOG_VERBOSE("callback_update_multitask", {}); callback_update_multitask(task_id, result.id, result); continue; } if (result.id == task_id) { LOG_VERBOSE("queue_results.push_back", {}); queue_results.push_back(result); condition_results.notify_one(); return; } } } }; // // base64 utils (TODO: move to common in the future) // static const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static inline bool is_base64(uint8_t c) { return (isalnum(c) || (c == '+') || (c == '/')); } static inline std::vector base64_decode(const std::string & encoded_string) { int i = 0; int j = 0; int in_ = 0; int in_len = encoded_string.size(); uint8_t char_array_4[4]; uint8_t char_array_3[3]; std::vector ret; while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { char_array_4[i++] = encoded_string[in_]; in_++; if (i == 4) { for (i = 0; i <4; i++) { char_array_4[i] = base64_chars.find(char_array_4[i]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (i = 0; (i < 3); i++) { ret.push_back(char_array_3[i]); } i = 0; } } if (i) { for (j = i; j <4; j++) { char_array_4[j] = 0; } for (j = 0; j <4; j++) { char_array_4[j] = base64_chars.find(char_array_4[j]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (j = 0; (j < i - 1); j++) { ret.push_back(char_array_3[j]); } } return ret; } // // random string / id // static std::string random_string() { static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); std::random_device rd; std::mt19937 generator(rd()); std::string result(32, ' '); for (int i = 0; i < 32; ++i) { result[i] = str[generator() % str.size()]; } return result; } static std::string gen_chatcmplid() { std::stringstream chatcmplid; chatcmplid << "chatcmpl-" << random_string(); return chatcmplid.str(); }