#include "common.h" #include "llama.h" #include "ggml.h" #include <string> #include <vector> #include <math.h> namespace mean { static void run( const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_embd, n_samples] const std::vector<struct ggml_tensor *> & v_output) { printf("%s: Running mean...\n", __func__); for (size_t il = 0; il < v_input.size(); ++il) { // prepare output vector struct ggml_tensor * ctrl_out = v_output[il]; ggml_format_name(ctrl_out, "direction.%ld", il+1); // calculate mean vector struct ggml_tensor * t_layer = v_input[il]; GGML_ASSERT(t_layer->ne[0] == ctrl_out->ne[0]); // == n_embd for (int ic = 0; ic < t_layer->ne[0]; ic++) { float f = 0.0; for (int ir = 0; ir < t_layer->ne[1]; ir++) { f += ggml_get_f32_nd(t_layer, ic, ir, 0, 0); } f /= t_layer->ne[1]; ggml_set_f32_1d(ctrl_out, ic, f); } // normalize output vector float norm = 0.0; for (int i = 0; i < ggml_nelements(ctrl_out); i++) { float f = ggml_get_f32_1d(ctrl_out, i); norm += f*f; } norm = sqrt(norm); for (int i = 0; i < ggml_nelements(ctrl_out); i++) { float f = ggml_get_f32_1d(ctrl_out, i); ggml_set_f32_1d(ctrl_out, i, f / norm); } printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size()); } } }