#include "common.h" #include "llama.h" #include "ggml.h" #include <cstdio> #include <random> #include <string> #include <tuple> #include <vector> /** * This the arbitrary data which will be passed to each callback. * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor. */ struct callback_data { std::vector<uint8_t> data; }; static std::string ggml_ne_string(const ggml_tensor * t) { std::string str; for (int i = 0; i < GGML_MAX_DIMS; ++i) { str += std::to_string(t->ne[i]); if (i + 1 < GGML_MAX_DIMS) { str += ", "; } } return str; } static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) { GGML_ASSERT(n > 0); float sum = 0; for (int64_t i3 = 0; i3 < ne[3]; i3++) { printf(" [\n"); for (int64_t i2 = 0; i2 < ne[2]; i2++) { if (i2 == n && ne[2] > 2*n) { printf(" ..., \n"); i2 = ne[2] - n; } printf(" [\n"); for (int64_t i1 = 0; i1 < ne[1]; i1++) { if (i1 == n && ne[1] > 2*n) { printf(" ..., \n"); i1 = ne[1] - n; } printf(" ["); for (int64_t i0 = 0; i0 < ne[0]; i0++) { if (i0 == n && ne[0] > 2*n) { printf("..., "); i0 = ne[0] - n; } size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0]; float v; if (type == GGML_TYPE_F16) { v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]); } else if (type == GGML_TYPE_F32) { v = *(float *) &data[i]; } else if (type == GGML_TYPE_I32) { v = (float) *(int32_t *) &data[i]; } else if (type == GGML_TYPE_I16) { v = (float) *(int16_t *) &data[i]; } else if (type == GGML_TYPE_I8) { v = (float) *(int8_t *) &data[i]; } else { GGML_ASSERT(false); } printf("%12.4f", v); sum += v; if (i0 < ne[0] - 1) printf(", "); } printf("],\n"); } printf(" ],\n"); } printf(" ]\n"); printf(" sum = %f\n", sum); } } /** * GGML operations callback during the graph execution. * * @param t current tensor * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection. * see ggml_backend_sched_eval_callback * @param user_data user data to pass at each call back * @return true to receive data or continue the graph, false otherwise */ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) { auto * cb_data = (callback_data *) user_data; const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src1 = t->src[1]; if (ask) { return true; // Always retrieve data } char src1_str[128] = {0}; if (src1) { snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str()); } printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type), ggml_op_desc(t), src0->name, ggml_ne_string(src0).c_str(), src1 ? src1_str : "", ggml_ne_string(t).c_str()); // copy the data from the GPU memory if needed const bool is_host = ggml_backend_buffer_is_host(t->buffer); if (!is_host) { auto n_bytes = ggml_nbytes(t); cb_data->data.resize(n_bytes); ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes); } if (!ggml_is_quantized(t->type)) { uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data(); ggml_print_tensor(data, t->type, t->ne, t->nb, 3); } return true; } static bool run(llama_context * ctx, const gpt_params & params) { const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos); if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } return true; } int main(int argc, char ** argv) { callback_data cb_data; gpt_params params; if (!gpt_params_parse(argc, argv, params)) { gpt_params_print_usage(argc, argv, params); return 1; } print_build_info(); std::mt19937 rng(params.seed); llama_backend_init(); llama_numa_init(params.numa); // pass the callback to the backend scheduler // it will be executed for each node during the graph computation params.cb_eval = ggml_debug; params.cb_eval_user_data = &cb_data; params.warmup = false; // init llama_model * model; llama_context * ctx; std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } bool OK = run(ctx, params); if (!OK) { return 1; } llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }