// // MIT license // Copyright (C) 2024 Intel Corporation // SPDX-License-Identifier: MIT // // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // #ifndef GGML_SYCL_COMMON_HPP #define GGML_SYCL_COMMON_HPP #include #include #include "dpct/helper.hpp" #include "ggml-sycl.h" #include "presets.hpp" #if GGML_SYCL_DNNL #include "dnnl.hpp" #include "dnnl_sycl.hpp" #endif #define GGML_COMMON_DECL_SYCL #define GGML_COMMON_IMPL_SYCL #include "ggml-common.h" void* ggml_sycl_host_malloc(size_t size); void ggml_sycl_host_free(void* ptr); static int g_ggml_sycl_debug = 0; #define GGML_SYCL_DEBUG(...) \ do { \ if (g_ggml_sycl_debug) \ fprintf(stderr, __VA_ARGS__); \ } while (0) #define CHECK_TRY_ERROR(expr) \ [&]() { \ try { \ expr; \ return dpct::success; \ } catch (std::exception const& e) { \ std::cerr << e.what() << "\nException caught at file:" << __FILE__ \ << ", line:" << __LINE__ << ", func:" << __func__ \ << std::endl; \ return dpct::default_error; \ } \ }() #define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP #define VER_4VEC 610 // todo for hardward optimize. #define VER_GEN9 700 // todo for hardward optimize. #define VER_GEN12 1000000 // todo for hardward optimize. #define VER_GEN13 (VER_GEN12 + 1030) // todo for hardward optimize. #define GGML_SYCL_MAX_NODES 8192 // TODO: adapt to hardwares // define for XMX in Intel GPU // TODO: currently, it's not used for XMX really. #if !defined(GGML_SYCL_FORCE_MMQ) #define SYCL_USE_XMX #endif // max batch size to use MMQ kernels when tensor cores are available #define MMQ_MAX_BATCH_SIZE 32 #if defined(_MSC_VER) #pragma warning(disable : 4244 4267) // possible loss of data #endif // dmmv = dequantize_mul_mat_vec #ifndef GGML_SYCL_DMMV_X #define GGML_SYCL_DMMV_X 32 #endif #ifndef GGML_SYCL_MMV_Y #define GGML_SYCL_MMV_Y 1 #endif typedef sycl::queue *queue_ptr; enum ggml_sycl_backend_gpu_mode { SYCL_UNSET_GPU_MODE = -1, SYCL_SINGLE_GPU_MODE = 0, SYCL_MUL_GPU_MODE }; static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size"); static void crash() { int* ptr = NULL; *ptr = 0; } [[noreturn]] static void ggml_sycl_error( const char* stmt, const char* func, const char* file, const int line, const char* msg) { fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg); fprintf(stderr, " in function %s at %s:%d\n", func, file, line); GGML_ABORT("SYCL error"); } #define SYCL_CHECK(err) \ do { \ auto err_ = (err); \ if (err_ != 0) \ ggml_sycl_error( \ #err, \ __func__, \ __FILE__, \ __LINE__, \ "Meet error in this line code!"); \ } while (0) #if DPCT_COMPAT_RT_VERSION >= 11100 #define GGML_SYCL_ASSUME(x) __builtin_assume(x) #else #define GGML_SYCL_ASSUME(x) #endif // DPCT_COMPAT_RT_VERSION >= 11100 #ifdef GGML_SYCL_F16 typedef sycl::half dfloat; // dequantize float typedef sycl::half2 dfloat2; #else typedef float dfloat; // dequantize float typedef sycl::float2 dfloat2; #endif // GGML_SYCL_F16 #define MMVQ_MAX_BATCH_SIZE 8 #define MMVQ_MIN_BATCH_SIZE 4 static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; static int g_all_sycl_device_count = -1; static bool g_ggml_backend_sycl_buffer_type_initialized = false; static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode = SYCL_UNSET_GPU_MODE; static void* g_scratch_buffer = nullptr; static size_t g_scratch_size = 0; // disabled by default static size_t g_scratch_offset = 0; [[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) { stream_ct1 << "ERROR: ggml-sycl was compiled without support for the " "current GPU architecture.\n"; // __trap(); std::exit(1); (void)bad_arch; // suppress unused function warning } int get_current_device_id(); inline dpct::err0 ggml_sycl_set_device(const int device) try { int current_device_id; SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id())); // GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d, // current_device_id=%d\n", device, current_device); if (device == current_device_id) { return 0; } return CHECK_TRY_ERROR(dpct::select_device(device)); } catch (sycl::exception const& exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; crash(); std::exit(1); } ////////////////////// struct ggml_sycl_device_info { int device_count; struct sycl_device_info { int cc; // compute capability // int nsm; // number of streaming multiprocessors // size_t smpb; // max. shared memory per block bool vmm; // virtual memory support size_t total_vram; }; sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {}; std::array default_tensor_split = {}; int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0}; }; const ggml_sycl_device_info & ggml_sycl_info(); struct ggml_sycl_pool { virtual ~ggml_sycl_pool() = default; virtual void * alloc(size_t size, size_t * actual_size) = 0; virtual void free(void * ptr, size_t size) = 0; }; template struct ggml_sycl_pool_alloc { ggml_sycl_pool * pool = nullptr; T * ptr = nullptr; size_t actual_size = 0; explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) { } ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) { alloc(size); } ~ggml_sycl_pool_alloc() { if (ptr != nullptr) { pool->free(ptr, actual_size); } } // size is in number of elements T * alloc(size_t size) { GGML_ASSERT(pool != nullptr); GGML_ASSERT(ptr == nullptr); ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size); return ptr; } T * alloc(ggml_sycl_pool & pool, size_t size) { this->pool = &pool; return alloc(size); } T * get() { return ptr; } ggml_sycl_pool_alloc() = default; ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete; ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete; ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete; ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete; }; // backend interface struct ggml_tensor_extra_gpu { void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split // tensors dpct::event_ptr events[GGML_SYCL_MAX_DEVICES] [GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs }; struct ggml_backend_sycl_context { int device; std::string name; queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } }; explicit ggml_backend_sycl_context(int device) : device(device), name(GGML_SYCL_NAME + std::to_string(device)) { } queue_ptr stream(int device, int stream) { if (qptrs[device][stream] == nullptr) { qptrs[device][stream] = &(dpct::get_device(device).default_queue()); } return qptrs[device][stream]; } queue_ptr stream() { return stream(device, 0); } #if GGML_SYCL_DNNL dnnl::engine make_engine(sycl::queue* q) { // Get the device associated with the queue sycl::device dev = q->get_device(); // Get the context associated with the queue sycl::context ctx = q->get_context(); const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx); return eng; } std::unordered_map stream_map; std::unordered_map engine_map; dnnl::stream stream_dnnl(int device, int _stream) { auto q = stream(device, _stream); return stream_dnnl(q); } dnnl::engine engine_dnnl(sycl::queue* qptr) { auto it = engine_map.find(qptr); if (it == engine_map.end()) { auto eng = make_engine(qptr); engine_map[qptr] = eng; return eng; } else { return it->second; } } dnnl::stream stream_dnnl(sycl::queue* qptr) { auto it = stream_map.find(qptr); if (it == stream_map.end()) { auto eng = engine_dnnl(qptr); auto stream = dnnl::sycl_interop::make_stream(eng, *qptr); stream_map[qptr] = stream; return stream; } else { return it->second; } } dnnl::stream stream_dnnl() { return stream_dnnl(device, 0); } #endif // pool std::unique_ptr pools[GGML_SYCL_MAX_DEVICES]; static std::unique_ptr new_pool_for_device(queue_ptr qptr, int device); ggml_sycl_pool & pool(int device) { if (pools[device] == nullptr) { pools[device] = new_pool_for_device(stream(device,0), device); } return *pools[device]; } ggml_sycl_pool & pool() { return pool(device); } }; // common device functions static __dpct_inline__ float warp_reduce_sum(float x, const sycl::nd_item<3>& item_ct1) { #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { /* DPCT1096:98: The right-most dimension of the work-group used in the SYCL kernel that calls this function may be less than "32". The function "dpct::permute_sub_group_by_xor" may return an unexpected result on the CPU device. Modify the size of the work-group to ensure that the value of the right-most dimension is a multiple of "32". */ x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask); } return x; } static __dpct_inline__ sycl::float2 warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) { #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(), mask); a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(), mask); } return a; } static __dpct_inline__ float warp_reduce_max(float x, const sycl::nd_item<3>& item_ct1) { #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { /* DPCT1096:97: The right-most dimension of the work-group used in the SYCL kernel that calls this function may be less than "32". The function "dpct::permute_sub_group_by_xor" may return an unexpected result on the CPU device. Modify the size of the work-group to ensure that the value of the right-most dimension is a multiple of "32". */ x = sycl::fmax(x, dpct::permute_sub_group_by_xor( item_ct1.get_sub_group(), x, mask)); } return x; } // Helper for vec loading aligned data template inline sycl::vec vec_aligned_load(const Tp* aligned_ptr) { return *reinterpret_cast*>(aligned_ptr); } // Helper for accessing pointers with no warnings template static __dpct_inline__ Tp* get_pointer(sycl::local_accessor acc) { return acc.template get_multi_ptr().get(); } int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size); #endif // GGML_SYCL_COMMON_HPP