import json import os import re import struct import sys from typing import Any, Dict, Sequence, TextIO import torch from convert import DATA_TYPE_TO_FTYPE, NUMPY_TYPE_TO_DATA_TYPE, DataType HF_SUBLAYER_TO_GGML = { "self_attn.q_proj": "attention.wq", "self_attn.k_proj": "attention.wk", "self_attn.v_proj": "attention.wv", "self_attn.o_proj": "attention.wo", "mlp.gate_proj": "feed_forward.w1", "mlp.down_proj": "feed_forward.w2", "mlp.up_proj": "feed_forward.w3", "input_layernorm": "attention_norm", "post_attention_layernorm": "ffn_norm", # "norm": "norm", # "embed_tokens": "tok_embeddings", # "lm_head": "output", } def translate_tensor_name(t: str) -> str: match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t) if match: nn = match.group(1) sub_layer = match.group(2) lora_type = match.group(3) sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer) if sub_layer_renamed is None: print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}") sys.exit(1) output_string = ( f"layers.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}" ) return output_string else: print(f"Error: unrecognized tensor {t}") sys.exit(1) def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None: fout.write(b"ggla"[::-1]) # magic (ggml lora) fout.write(struct.pack("i", 1)) # file version fout.write(struct.pack("i", params["r"])) # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int # but some models ship a float value instead # let's convert to int, but fail if lossless conversion is not possible assert int(params["lora_alpha"]) == params["lora_alpha"], "cannot convert float to int losslessly" fout.write(struct.pack("i", int(params["lora_alpha"]))) def write_tensor_header( self, name: str, shape: Sequence[int], data_type: DataType ) -> None: sname = name.encode("utf-8") fout.write( struct.pack( "iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]], ) ) fout.write(struct.pack("i" * len(shape), *shape[::-1])) fout.write(sname) fout.seek((fout.tell() + 31) & -32) if len(sys.argv) != 2: print(f"Usage: python {sys.argv[0]} <path>") print( "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" ) sys.exit(1) input_json = os.path.join(sys.argv[1], "adapter_config.json") input_model = os.path.join(sys.argv[1], "adapter_model.bin") output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") model = torch.load(input_model, map_location="cpu") with open(input_json, "r") as f: params = json.load(f) if params["peft_type"] != "LORA": print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") sys.exit(1) if params["fan_in_fan_out"] is True: print("Error: param fan_in_fan_out is not supported") sys.exit(1) if params["bias"] is not None and params["bias"] != "none": print("Error: param bias is not supported") sys.exit(1) # TODO: these seem to be layers that have been trained but without lora. # doesn't seem widely used but eventually should be supported if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: print("Error: param modules_to_save is not supported") sys.exit(1) with open(output_path, "wb") as fout: fout.truncate() write_file_header(fout, params) for k, v in model.items(): if k.endswith("lora_A.weight"): if v.dtype != torch.float16 and v.dtype != torch.float32: v = v.float() v = v.T else: v = v.float() t = v.numpy() tname = translate_tensor_name(k) print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) t.tofile(fout) print(f"Converted {input_json} and {input_model} to {output_path}")