#include "common.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include "json-schema-to-grammar.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__APPLE__) && defined(__MACH__) #include #include #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #include #include #include #else #include #include #include #endif #if defined(LLAMA_USE_CURL) #include #include #include #include #endif #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) #define GGML_USE_CUDA_SYCL #endif #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN) #define GGML_USE_CUDA_SYCL_VULKAN #endif #if defined(LLAMA_USE_CURL) #ifdef __linux__ #include #elif defined(_WIN32) #define PATH_MAX MAX_PATH #else #include #endif #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083 #endif // LLAMA_USE_CURL using json = nlohmann::ordered_json; // // CPU utils // int32_t cpu_get_num_physical_cores() { #ifdef __linux__ // enumerate the set of thread siblings, num entries is num cores std::unordered_set siblings; for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { std::ifstream thread_siblings("/sys/devices/system/cpu/cpu" + std::to_string(cpu) + "/topology/thread_siblings"); if (!thread_siblings.is_open()) { break; // no more cpus } std::string line; if (std::getline(thread_siblings, line)) { siblings.insert(line); } } if (!siblings.empty()) { return static_cast(siblings.size()); } #elif defined(__APPLE__) && defined(__MACH__) int32_t num_physical_cores; size_t len = sizeof(num_physical_cores); int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } #elif defined(_WIN32) //TODO: Implement #endif unsigned int n_threads = std::thread::hardware_concurrency(); return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; } #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) #include static void cpuid(unsigned leaf, unsigned subleaf, unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) { __asm__("movq\t%%rbx,%%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx,%%rsi" : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx) : "0"(leaf), "2"(subleaf)); } static int pin_cpu(int cpu) { cpu_set_t mask; CPU_ZERO(&mask); CPU_SET(cpu, &mask); return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask); } static bool is_hybrid_cpu(void) { unsigned eax, ebx, ecx, edx; cpuid(7, 0, &eax, &ebx, &ecx, &edx); return !!(edx & (1u << 15)); } static bool is_running_on_efficiency_core(void) { unsigned eax, ebx, ecx, edx; cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx); int intel_atom = 0x20; int core_type = (eax & 0xff000000u) >> 24; return core_type == intel_atom; } static int cpu_count_math_cpus(int n_cpu) { int result = 0; for (int cpu = 0; cpu < n_cpu; ++cpu) { if (pin_cpu(cpu)) { return -1; } if (is_running_on_efficiency_core()) { continue; // efficiency cores harm lockstep threading } ++cpu; // hyperthreading isn't useful for linear algebra ++result; } return result; } #endif // __x86_64__ && __linux__ /** * Returns number of CPUs on system that are useful for math. */ int32_t cpu_get_num_math() { #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__) int n_cpu = sysconf(_SC_NPROCESSORS_ONLN); if (n_cpu < 1) { return cpu_get_num_physical_cores(); } if (is_hybrid_cpu()) { cpu_set_t affinity; if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) { int result = cpu_count_math_cpus(n_cpu); pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity); if (result > 0) { return result; } } } #endif return cpu_get_num_physical_cores(); } // // CLI argument parsing // void gpt_params_handle_hf_token(gpt_params & params) { if (params.hf_token.empty() && std::getenv("HF_TOKEN")) { params.hf_token = std::getenv("HF_TOKEN"); } } void gpt_params_handle_model_default(gpt_params & params) { if (!params.hf_repo.empty()) { // short-hand to avoid specifying --hf-file -> default it to --model if (params.hf_file.empty()) { if (params.model.empty()) { throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); } params.hf_file = params.model; } else if (params.model.empty()) { params.model = fs_get_cache_file(string_split(params.hf_file, '/').back()); } } else if (!params.model_url.empty()) { if (params.model.empty()) { auto f = string_split(params.model_url, '#').front(); f = string_split(f, '?').front(); params.model = fs_get_cache_file(string_split(f, '/').back()); } } else if (params.model.empty()) { params.model = DEFAULT_MODEL_PATH; } } bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { bool invalid_param = false; std::string arg; const std::string arg_prefix = "--"; llama_sampling_params & sparams = params.sparams; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) { throw std::invalid_argument("error: unknown argument: " + arg); } if (invalid_param) { throw std::invalid_argument("error: invalid parameter for argument: " + arg); } } if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } gpt_params_handle_model_default(params); gpt_params_handle_hf_token(params); if (params.escape) { string_process_escapes(params.prompt); string_process_escapes(params.input_prefix); string_process_escapes(params.input_suffix); string_process_escapes(sparams.cfg_negative_prompt); for (auto & antiprompt : params.antiprompt) { string_process_escapes(antiprompt); } } if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; } return true; } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { const auto params_org = params; // the example can modify the default params try { if (!gpt_params_parse_ex(argc, argv, params) || params.usage) { params = params_org; params.usage = true; return false; } } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); params = params_org; return false; } return true; } #define CHECK_ARG if (++i >= argc) { invalid_param = true; return true; } bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) { const char split_delim = ','; llama_sampling_params & sparams = params.sparams; if (arg == "-s" || arg == "--seed") { CHECK_ARG // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context. params.seed = std::stoul(argv[i]); sparams.seed = std::stoul(argv[i]); return true; } if (arg == "-t" || arg == "--threads") { CHECK_ARG params.n_threads = std::stoi(argv[i]); if (params.n_threads <= 0) { params.n_threads = std::thread::hardware_concurrency(); } return true; } if (arg == "-tb" || arg == "--threads-batch") { CHECK_ARG params.n_threads_batch = std::stoi(argv[i]); if (params.n_threads_batch <= 0) { params.n_threads_batch = std::thread::hardware_concurrency(); } return true; } if (arg == "-td" || arg == "--threads-draft") { CHECK_ARG params.n_threads_draft = std::stoi(argv[i]); if (params.n_threads_draft <= 0) { params.n_threads_draft = std::thread::hardware_concurrency(); } return true; } if (arg == "-tbd" || arg == "--threads-batch-draft") { CHECK_ARG params.n_threads_batch_draft = std::stoi(argv[i]); if (params.n_threads_batch_draft <= 0) { params.n_threads_batch_draft = std::thread::hardware_concurrency(); } return true; } if (arg == "-p" || arg == "--prompt") { CHECK_ARG params.prompt = argv[i]; return true; } if (arg == "-e" || arg == "--escape") { params.escape = true; return true; } if (arg == "--no-escape") { params.escape = false; return true; } if (arg == "--prompt-cache") { CHECK_ARG params.path_prompt_cache = argv[i]; return true; } if (arg == "--prompt-cache-all") { params.prompt_cache_all = true; return true; } if (arg == "--prompt-cache-ro") { params.prompt_cache_ro = true; return true; } if (arg == "-bf" || arg == "--binary-file") { CHECK_ARG std::ifstream file(argv[i], std::ios::binary); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } // store the external file name in params params.prompt_file = argv[i]; std::ostringstream ss; ss << file.rdbuf(); params.prompt = ss.str(); fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]); return true; } if (arg == "-f" || arg == "--file") { CHECK_ARG std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } // store the external file name in params params.prompt_file = argv[i]; std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (!params.prompt.empty() && params.prompt.back() == '\n') { params.prompt.pop_back(); } return true; } if (arg == "--in-file") { CHECK_ARG std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } params.in_files.push_back(argv[i]); return true; } if (arg == "-n" || arg == "--predict" || arg == "--n-predict") { CHECK_ARG params.n_predict = std::stoi(argv[i]); return true; } if (arg == "--top-k") { CHECK_ARG sparams.top_k = std::stoi(argv[i]); return true; } if (arg == "-c" || arg == "--ctx-size") { CHECK_ARG params.n_ctx = std::stoi(argv[i]); return true; } if (arg == "--grp-attn-n" || arg == "-gan") { CHECK_ARG params.grp_attn_n = std::stoi(argv[i]); return true; } if (arg == "--grp-attn-w" || arg == "-gaw") { CHECK_ARG params.grp_attn_w = std::stoi(argv[i]); return true; } if (arg == "--rope-freq-base") { CHECK_ARG params.rope_freq_base = std::stof(argv[i]); return true; } if (arg == "--rope-freq-scale") { CHECK_ARG params.rope_freq_scale = std::stof(argv[i]); return true; } if (arg == "--rope-scaling") { CHECK_ARG std::string value(argv[i]); /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { invalid_param = true; } return true; } if (arg == "--rope-scale") { CHECK_ARG params.rope_freq_scale = 1.0f / std::stof(argv[i]); return true; } if (arg == "--yarn-orig-ctx") { CHECK_ARG params.yarn_orig_ctx = std::stoi(argv[i]); return true; } if (arg == "--yarn-ext-factor") { CHECK_ARG params.yarn_ext_factor = std::stof(argv[i]); return true; } if (arg == "--yarn-attn-factor") { CHECK_ARG params.yarn_attn_factor = std::stof(argv[i]); return true; } if (arg == "--yarn-beta-fast") { CHECK_ARG params.yarn_beta_fast = std::stof(argv[i]); return true; } if (arg == "--yarn-beta-slow") { CHECK_ARG params.yarn_beta_slow = std::stof(argv[i]); return true; } if (arg == "--pooling") { CHECK_ARG std::string value(argv[i]); /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } else { invalid_param = true; } return true; } if (arg == "--attention") { CHECK_ARG std::string value(argv[i]); /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } else { invalid_param = true; } return true; } if (arg == "--defrag-thold" || arg == "-dt") { CHECK_ARG params.defrag_thold = std::stof(argv[i]); return true; } if (arg == "--samplers") { CHECK_ARG const auto sampler_names = string_split(argv[i], ';'); sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true); return true; } if (arg == "--sampling-seq") { CHECK_ARG sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]); return true; } if (arg == "--top-p") { CHECK_ARG sparams.top_p = std::stof(argv[i]); return true; } if (arg == "--min-p") { CHECK_ARG sparams.min_p = std::stof(argv[i]); return true; } if (arg == "--temp") { CHECK_ARG sparams.temp = std::stof(argv[i]); sparams.temp = std::max(sparams.temp, 0.0f); return true; } if (arg == "--tfs") { CHECK_ARG sparams.tfs_z = std::stof(argv[i]); return true; } if (arg == "--typical") { CHECK_ARG sparams.typical_p = std::stof(argv[i]); return true; } if (arg == "--repeat-last-n") { CHECK_ARG sparams.penalty_last_n = std::stoi(argv[i]); sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n); return true; } if (arg == "--repeat-penalty") { CHECK_ARG sparams.penalty_repeat = std::stof(argv[i]); return true; } if (arg == "--frequency-penalty") { CHECK_ARG sparams.penalty_freq = std::stof(argv[i]); return true; } if (arg == "--presence-penalty") { CHECK_ARG sparams.penalty_present = std::stof(argv[i]); return true; } if (arg == "--dynatemp-range") { CHECK_ARG sparams.dynatemp_range = std::stof(argv[i]); return true; } if (arg == "--dynatemp-exp") { CHECK_ARG sparams.dynatemp_exponent = std::stof(argv[i]); return true; } if (arg == "--mirostat") { CHECK_ARG sparams.mirostat = std::stoi(argv[i]); return true; } if (arg == "--mirostat-lr") { CHECK_ARG sparams.mirostat_eta = std::stof(argv[i]); return true; } if (arg == "--mirostat-ent") { CHECK_ARG sparams.mirostat_tau = std::stof(argv[i]); return true; } if (arg == "--cfg-negative-prompt") { CHECK_ARG sparams.cfg_negative_prompt = argv[i]; return true; } if (arg == "--cfg-negative-prompt-file") { CHECK_ARG std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(sparams.cfg_negative_prompt)); if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') { sparams.cfg_negative_prompt.pop_back(); } return true; } if (arg == "--cfg-scale") { CHECK_ARG sparams.cfg_scale = std::stof(argv[i]); return true; } if (arg == "-b" || arg == "--batch-size") { CHECK_ARG params.n_batch = std::stoi(argv[i]); return true; } if (arg == "-ub" || arg == "--ubatch-size") { CHECK_ARG params.n_ubatch = std::stoi(argv[i]); return true; } if (arg == "--keep") { CHECK_ARG params.n_keep = std::stoi(argv[i]); return true; } if (arg == "--draft") { CHECK_ARG params.n_draft = std::stoi(argv[i]); return true; } if (arg == "--chunks") { CHECK_ARG params.n_chunks = std::stoi(argv[i]); return true; } if (arg == "-np" || arg == "--parallel") { CHECK_ARG params.n_parallel = std::stoi(argv[i]); return true; } if (arg == "-ns" || arg == "--sequences") { CHECK_ARG params.n_sequences = std::stoi(argv[i]); return true; } if (arg == "--p-split" || arg == "-ps") { CHECK_ARG params.p_split = std::stof(argv[i]); return true; } if (arg == "-m" || arg == "--model") { CHECK_ARG params.model = argv[i]; return true; } if (arg == "-md" || arg == "--model-draft") { CHECK_ARG params.model_draft = argv[i]; return true; } if (arg == "-a" || arg == "--alias") { CHECK_ARG params.model_alias = argv[i]; return true; } if (arg == "-mu" || arg == "--model-url") { CHECK_ARG params.model_url = argv[i]; return true; } if (arg == "-hft" || arg == "--hf-token") { if (++i >= argc) { invalid_param = true; return true; } params.hf_token = argv[i]; return true; } if (arg == "-hfr" || arg == "--hf-repo") { CHECK_ARG params.hf_repo = argv[i]; return true; } if (arg == "-hff" || arg == "--hf-file") { CHECK_ARG params.hf_file = argv[i]; return true; } if (arg == "--lora") { CHECK_ARG params.lora_adapter.emplace_back(argv[i], 1.0f); return true; } if (arg == "--lora-scaled") { CHECK_ARG const char* lora_adapter = argv[i]; CHECK_ARG params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i])); return true; } if (arg == "--lora-base") { CHECK_ARG params.lora_base = argv[i]; return true; } if (arg == "--control-vector") { CHECK_ARG params.control_vectors.push_back({ 1.0f, argv[i], }); return true; } if (arg == "--control-vector-scaled") { CHECK_ARG const char* fname = argv[i]; CHECK_ARG params.control_vectors.push_back({ std::stof(argv[i]), fname, }); return true; } if (arg == "--control-vector-layer-range") { CHECK_ARG params.control_vector_layer_start = std::stoi(argv[i]); CHECK_ARG params.control_vector_layer_end = std::stoi(argv[i]); return true; } if (arg == "--mmproj") { CHECK_ARG params.mmproj = argv[i]; return true; } if (arg == "--image") { CHECK_ARG params.image.emplace_back(argv[i]); return true; } if (arg == "-i" || arg == "--interactive") { params.interactive = true; return true; } if (arg == "-sp" || arg == "--special") { params.special = true; return true; } if (arg == "--embedding" || arg == "--embeddings") { params.embedding = true; return true; } if (arg == "--embd-normalize") { CHECK_ARG params.embd_normalize = std::stoi(argv[i]); return true; } if (arg == "--embd-output-format") { CHECK_ARG params.embd_out = argv[i]; return true; } if (arg == "--embd-separator") { CHECK_ARG params.embd_sep = argv[i]; return true; } if (arg == "-if" || arg == "--interactive-first") { params.interactive_first = true; return true; } if (arg == "-cnv" || arg == "--conversation") { params.conversation = true; return true; } if (arg == "--infill") { params.infill = true; return true; } if (arg == "-dkvc" || arg == "--dump-kv-cache") { params.dump_kv_cache = true; return true; } if (arg == "-nkvo" || arg == "--no-kv-offload") { params.no_kv_offload = true; return true; } if (arg == "-ctk" || arg == "--cache-type-k") { params.cache_type_k = argv[++i]; return true; } if (arg == "-ctv" || arg == "--cache-type-v") { params.cache_type_v = argv[++i]; return true; } if (arg == "-mli" || arg == "--multiline-input") { params.multiline_input = true; return true; } if (arg == "--simple-io") { params.simple_io = true; return true; } if (arg == "-cb" || arg == "--cont-batching") { params.cont_batching = true; return true; } if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; return true; } if (arg == "-co" || arg == "--color") { params.use_color = true; return true; } if (arg == "--mlock") { params.use_mlock = true; return true; } if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") { CHECK_ARG params.n_gpu_layers = std::stoi(argv[i]); if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } return true; } if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") { CHECK_ARG params.n_gpu_layers_draft = std::stoi(argv[i]); if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } return true; } if (arg == "--main-gpu" || arg == "-mg") { CHECK_ARG params.main_gpu = std::stoi(argv[i]); #ifndef GGML_USE_CUDA_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n"); #endif // GGML_USE_CUDA_SYCL_VULKAN return true; } if (arg == "--split-mode" || arg == "-sm") { CHECK_ARG std::string arg_next = argv[i]; if (arg_next == "none") { params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { #ifdef GGML_USE_SYCL fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); exit(1); #endif // GGML_USE_SYCL params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { invalid_param = true; return true; } #ifndef GGML_USE_CUDA_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n"); #endif // GGML_USE_CUDA_SYCL_VULKAN return true; } if (arg == "--tensor-split" || arg == "-ts") { CHECK_ARG std::string arg_next = argv[i]; // split string by , and / const std::regex regex{ R"([,/]+)" }; std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; std::vector split_arg{ it, {} }; if (split_arg.size() >= llama_max_devices()) { invalid_param = true; return true; } for (size_t i = 0; i < llama_max_devices(); ++i) { if (i < split_arg.size()) { params.tensor_split[i] = std::stof(split_arg[i]); } else { params.tensor_split[i] = 0.0f; } } #ifndef GGML_USE_CUDA_SYCL_VULKAN fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n"); #endif // GGML_USE_CUDA_SYCL_VULKAN return true; } if (arg == "--rpc") { CHECK_ARG params.rpc_servers = argv[i]; return true; } if (arg == "--no-mmap") { params.use_mmap = false; return true; } if (arg == "--numa") { CHECK_ARG std::string value(argv[i]); /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { invalid_param = true; } return true; } if (arg == "-v" || arg == "--verbose") { params.verbosity = 1; return true; } if (arg == "--verbosity") { CHECK_ARG params.verbosity = std::stoi(argv[i]); return true; } if (arg == "--verbose-prompt") { params.verbose_prompt = true; return true; } if (arg == "--no-display-prompt") { params.display_prompt = false; return true; } if (arg == "-r" || arg == "--reverse-prompt") { CHECK_ARG params.antiprompt.emplace_back(argv[i]); return true; } if (arg == "-ld" || arg == "--logdir") { CHECK_ARG params.logdir = argv[i]; if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } return true; } if (arg == "-lcs" || arg == "--lookup-cache-static") { CHECK_ARG params.lookup_cache_static = argv[i]; return true; } if (arg == "-lcd" || arg == "--lookup-cache-dynamic") { CHECK_ARG params.lookup_cache_dynamic = argv[i]; return true; } if (arg == "--save-all-logits" || arg == "--kl-divergence-base") { CHECK_ARG params.logits_file = argv[i]; return true; } if (arg == "--perplexity" || arg == "--all-logits") { params.logits_all = true; return true; } if (arg == "--ppl-stride") { CHECK_ARG params.ppl_stride = std::stoi(argv[i]); return true; } if (arg == "--ppl-output-type") { CHECK_ARG params.ppl_output_type = std::stoi(argv[i]); return true; } if (arg == "-ptc" || arg == "--print-token-count") { CHECK_ARG params.n_print = std::stoi(argv[i]); return true; } if (arg == "--check-tensors") { params.check_tensors = true; return true; } if (arg == "--hellaswag") { params.hellaswag = true; return true; } if (arg == "--hellaswag-tasks") { CHECK_ARG params.hellaswag_tasks = std::stoi(argv[i]); return true; } if (arg == "--winogrande") { params.winogrande = true; return true; } if (arg == "--winogrande-tasks") { CHECK_ARG params.winogrande_tasks = std::stoi(argv[i]); return true; } if (arg == "--multiple-choice") { params.multiple_choice = true; return true; } if (arg == "--multiple-choice-tasks") { CHECK_ARG params.multiple_choice_tasks = std::stoi(argv[i]); return true; } if (arg == "--kl-divergence") { params.kl_divergence = true; return true; } if (arg == "--ignore-eos") { params.ignore_eos = true; return true; } if (arg == "--penalize-nl") { sparams.penalize_nl = true; return true; } if (arg == "-l" || arg == "--logit-bias") { CHECK_ARG std::stringstream ss(argv[i]); llama_token key; char sign; std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); } else { throw std::exception(); } } catch (const std::exception&) { invalid_param = true; return true; } return true; } if (arg == "-h" || arg == "--help" || arg == "--usage" ) { params.usage = true; return true; } if (arg == "--version") { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } if (arg == "--in-prefix-bos") { params.input_prefix_bos = true; params.enable_chat_template = false; return true; } if (arg == "--in-prefix") { CHECK_ARG params.input_prefix = argv[i]; params.enable_chat_template = false; return true; } if (arg == "--in-suffix") { CHECK_ARG params.input_suffix = argv[i]; params.enable_chat_template = false; return true; } if (arg == "--spm-infill") { params.spm_infill = true; return true; } if (arg == "--grammar") { CHECK_ARG sparams.grammar = argv[i]; return true; } if (arg == "--grammar-file") { CHECK_ARG std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(sparams.grammar) ); return true; } if (arg == "-j" || arg == "--json-schema") { CHECK_ARG sparams.grammar = json_schema_to_grammar(json::parse(argv[i])); return true; } if (arg == "--override-kv") { CHECK_ARG if (!string_parse_kv_override(argv[i], params.kv_overrides)) { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; return true; } return true; } if (arg == "--host") { CHECK_ARG params.hostname = argv[i]; return true; } if (arg == "--port") { CHECK_ARG params.port = std::stoi(argv[i]); return true; } if (arg == "--path") { CHECK_ARG params.public_path = argv[i]; return true; } if (arg == "--api-key") { CHECK_ARG params.api_keys.push_back(argv[i]); return true; } if (arg == "--api-key-file") { CHECK_ARG std::ifstream key_file(argv[i]); if (!key_file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } std::string key; while (std::getline(key_file, key)) { if (!key.empty()) { params.api_keys.push_back(key); } } key_file.close(); return true; } if (arg == "--ssl-key-file") { CHECK_ARG params.ssl_file_key = argv[i]; return true; } if (arg == "--ssl-cert-file") { CHECK_ARG params.ssl_file_cert = argv[i]; return true; } if (arg == "--timeout" || arg == "-to") { CHECK_ARG params.timeout_read = std::stoi(argv[i]); params.timeout_write = std::stoi(argv[i]); return true; } if (arg == "--threads-http") { CHECK_ARG params.n_threads_http = std::stoi(argv[i]); return true; } if (arg == "-spf" || arg == "--system-prompt-file") { CHECK_ARG std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } std::string system_prompt; std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(system_prompt) ); params.system_prompt = system_prompt; return true; } if (arg == "--log-format") { CHECK_ARG if (std::strcmp(argv[i], "json") == 0) { params.log_json = true; } else if (std::strcmp(argv[i], "text") == 0) { params.log_json = false; } else { invalid_param = true; return true; } return true; } if (arg == "--no-slots") { params.endpoint_slots = false; return true; } if (arg == "--metrics") { params.endpoint_metrics = true; return true; } if (arg == "--slot-save-path") { CHECK_ARG params.slot_save_path = argv[i]; // if doesn't end with DIRECTORY_SEPARATOR, add it if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { params.slot_save_path += DIRECTORY_SEPARATOR; } return true; } if (arg == "--chat-template") { CHECK_ARG if (!llama_chat_verify_template(argv[i])) { fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]); fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n"); invalid_param = true; return true; } params.chat_template = argv[i]; return true; } if (arg == "--slot-prompt-similarity" || arg == "-sps") { CHECK_ARG params.slot_prompt_similarity = std::stof(argv[i]); return true; } if (arg == "-pps") { params.is_pp_shared = true; return true; } if (arg == "-npp") { CHECK_ARG auto p = string_split(argv[i], split_delim); params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); return true; } if (arg == "-ntg") { CHECK_ARG auto p = string_split(argv[i], split_delim); params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); return true; } if (arg == "-npl") { CHECK_ARG auto p = string_split(argv[i], split_delim); params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); return true; } if (arg == "--context-file") { CHECK_ARG std::ifstream file(argv[i], std::ios::binary); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; return true; } params.context_files.push_back(argv[i]); return true; } if (arg == "--chunk-size") { CHECK_ARG params.chunk_size = std::stoi(argv[i]); return true; } if (arg == "--chunk-separator") { CHECK_ARG params.chunk_separator = argv[i]; return true; } if (arg == "--junk") { CHECK_ARG params.n_junk = std::stoi(argv[i]); return true; } if (arg == "--pos") { CHECK_ARG params.i_pos = std::stoi(argv[i]); return true; } if (arg == "-o" || arg == "--output" || arg == "--output-file") { CHECK_ARG params.out_file = argv[i]; params.cvector_outfile = argv[i]; return true; } if (arg == "-ofreq" || arg == "--output-frequency") { CHECK_ARG params.n_out_freq = std::stoi(argv[i]); return true; } if (arg == "--save-frequency") { CHECK_ARG params.n_save_freq = std::stoi(argv[i]); return true; } if (arg == "--process-output") { params.process_output = true; return true; } if (arg == "--no-ppl") { params.compute_ppl = false; return true; } if (arg == "--chunk" || arg == "--from-chunk") { CHECK_ARG params.i_chunk = std::stoi(argv[i]); return true; } // cvector params if (arg == "--positive-file") { CHECK_ARG params.cvector_positive_file = argv[i]; return true; } if (arg == "--negative-file") { CHECK_ARG params.cvector_negative_file = argv[i]; return true; } if (arg == "--pca-batch") { CHECK_ARG params.n_pca_batch = std::stoi(argv[i]); return true; } if (arg == "--pca-iter") { CHECK_ARG params.n_pca_iterations = std::stoi(argv[i]); return true; } if (arg == "--method") { CHECK_ARG std::string value(argv[i]); /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } else { invalid_param = true; } return true; } #ifndef LOG_DISABLE_LOGS // Parse args for logging parameters if (log_param_single_parse(argv[i])) { // Do nothing, log_param_single_parse automatically does it's thing // and returns if a match was found and parsed. return true; } if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) { // We have a matching known parameter requiring an argument, // now we need to check if there is anything after this argv // and flag invalid_param or parse it. CHECK_ARG if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) { invalid_param = true; return true; } return true; } // End of Parse args for logging parameters #endif // LOG_DISABLE_LOGS return false; } #ifdef __GNUC__ #ifdef __MINGW32__ #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) #endif void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { const llama_sampling_params & sparams = params.sparams; std::string sampler_type_chars; std::string sampler_type_names; for (const auto sampler_type : sparams.samplers_sequence) { sampler_type_chars += static_cast(sampler_type); sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";"; } sampler_type_names.pop_back(); struct option_info { LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5) option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) { va_list args_list; va_start(args_list, desc); char buffer[1024]; vsnprintf(buffer, sizeof(buffer), desc, args_list); va_end(args_list); this->desc = buffer; } option_info(const std::string & grp) : grp(grp) {} std::string tags; std::string args; std::string desc; std::string grp; }; std::vector options; // TODO: filter by tags options.push_back({ "general" }); options.push_back({ "*", "-h, --help, --usage", "print usage and exit" }); options.push_back({ "*", " --version", "show version and build info" }); options.push_back({ "*", "-v, --verbose", "print verbose information" }); options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity }); options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" }); options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" }); options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" }); options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed }); options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads }); options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" }); options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" }); options.push_back({ "speculative", "-tbd, --threads-batch-draft N", "number of threads to use during batch and prompt processing (default: same as --threads-draft)" }); options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft }); options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split }); options.push_back({ "*", "-lcs, --lookup-cache-static FNAME", "path to static lookup cache to use for lookup decoding (not updated by generation)" }); options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME", "path to dynamic lookup cache to use for lookup decoding (updated by generation)" }); options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx }); options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict }); options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch }); options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch }); options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep }); options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks }); options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" }); options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with\n" "in conversation mode, this will be used as system prompt\n" "(default: '%s')", params.prompt.c_str() }); options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" }); options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" }); options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" }); options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" }); options.push_back({ "*", " --no-escape", "do not process escape sequences" }); options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print }); options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" }); options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n" "not supported with --interactive or other interactive options" }); options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" }); options.push_back({ "main", "-r, --reverse-prompt PROMPT", "halt generation at PROMPT, return control in interactive mode\n" "can be specified more than once for multiple prompts" }); options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" }); options.push_back({ "main", "-cnv, --conversation", "run in conversation mode, does not print special tokens and suffix/prefix\n" "if suffix/prefix are not specified, default chat template will be used\n" "(default: %s)", params.conversation ? "true" : "false" }); options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" }); options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" }); options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" }); options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" }); options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" }); options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" }); options.push_back({ "server infill", " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" }); options.push_back({ "sampling" }); options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n" "(default: %s)", sampler_type_names.c_str() }); options.push_back({ "*", " --sampling-seq SEQUENCE", "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() }); options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" }); options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" }); options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp }); options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k }); options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p }); options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p }); options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z }); options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p }); options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n }); options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat }); options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present }); options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq }); options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range }); options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent }); options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n" "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n" "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat }); options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta }); options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau }); options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n" "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" }); options.push_back({ "main", " --cfg-negative-prompt PROMPT", "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() }); options.push_back({ "main", " --cfg-negative-prompt-file FNAME", "negative prompt file to use for guidance" }); options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale }); options.push_back({ "main", " --chat-template JINJA_TEMPLATE", "set custom jinja chat template (default: template taken from model's metadata)\n" "if suffix/prefix are specified, template will be disabled\n" "only commonly used templates are accepted:\n" "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" }); options.push_back({ "grammar" }); options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() }); options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" }); options.push_back({ "*", "-j, --json-schema SCHEMA", "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n" "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" }); options.push_back({ "embedding" }); options.push_back({ "embedding", " --pooling {none,mean,cls,last}", "pooling type for embeddings, use model default if unspecified" }); options.push_back({ "embedding", " --attention {causal,non-causal}", "attention type for embeddings, use model default if unspecified" }); options.push_back({ "context hacking" }); options.push_back({ "*", " --rope-scaling {none,linear,yarn}", "RoPE frequency scaling method, defaults to linear unless specified by the model" }); options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" }); options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" }); options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" }); options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx }); options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor }); options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor }); options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow }); options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast }); options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n }); options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w }); options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" }); options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" }); options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() }); options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() }); options.push_back({ "perplexity" }); options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" }); options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" }); options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks }); options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" }); options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks }); options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" }); options.push_back({ "perplexity", " --multiple-choice-tasks N", "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks }); options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" }); options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride }); options.push_back({ "perplexity", " --ppl-output-type {0,1}", "output type for perplexity calculation (default: %d)", params.ppl_output_type }); options.push_back({ "parallel" }); options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold }); options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel }); options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences }); options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" }); options.push_back({ "multi-modality" }); options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" }); options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" }); options.push_back({ "backend" }); options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" }); if (llama_supports_mlock()) { options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" }); } if (llama_supports_mmap()) { options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" }); } options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n" " - distribute: spread execution evenly over all nodes\n" " - isolate: only spawn threads on CPUs on the node that execution started on\n" " - numactl: use the CPU map provided by numactl\n" "if run without this previously, it is recommended to drop the system page cache before using this\n" "see https://github.com/ggerganov/llama.cpp/issues/1437" }); if (llama_supports_gpu_offload()) { options.push_back({ "*", "-ngl, --gpu-layers N", "number of layers to store in VRAM" }); options.push_back({ "*", "-ngld, --gpu-layers-draft N", "number of layers to store in VRAM for the draft model" }); options.push_back({ "*", "-sm, --split-mode SPLIT_MODE", "how to split the model across multiple GPUs, one of:\n" " - none: use one GPU only\n" " - layer (default): split layers and KV across GPUs\n" " - row: split rows across GPUs" }); options.push_back({ "*", "-ts, --tensor-split SPLIT", "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" }); options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n" "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu }); } options.push_back({ "model" }); options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" }); options.push_back({ "*", " --override-kv KEY=TYPE:VALUE", "advanced option to override model metadata by key. may be specified multiple times.\n" "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" }); options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (implies --no-mmap)" }); options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (implies --no-mmap)" }); options.push_back({ "*", " --lora-base FNAME", "optional model to use as a base for the layers modified by the LoRA adapter" }); options.push_back({ "*", " --control-vector FNAME", "add a control vector\n" "note: this argument can be repeated to add multiple control vectors" }); options.push_back({ "*", " --control-vector-scaled FNAME SCALE", "add a control vector with user defined scaling SCALE\n" "note: this argument can be repeated to add multiple scaled control vectors" }); options.push_back({ "*", " --control-vector-layer-range START END", "layer range to apply the control vector(s) to, start and end inclusive" }); options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n" "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH }); options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" }); options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" }); options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" }); options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" }); options.push_back({ "*", "-hft, --hf-token TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)" }); options.push_back({ "retrieval" }); options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" }); options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size }); options.push_back({ "retrieval", " --chunk-separator STRING", "separator between chunks (default: '%s')", params.chunk_separator.c_str() }); options.push_back({ "passkey" }); options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk }); options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos }); options.push_back({ "imatrix" }); options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() }); options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq }); options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq }); options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" }); options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" }); options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk }); options.push_back({ "bench" }); options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" }); options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" }); options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" }); options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" }); options.push_back({ "embedding" }); options.push_back({ "embedding", " --embd-normalize", "normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize }); options.push_back({ "embedding", " --embd-output-format", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix" }); options.push_back({ "embedding", " --embd-separator", "separator of embendings (default \\n) for example \"<#sep#>\"" }); options.push_back({ "server" }); options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() }); options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port }); options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() }); options.push_back({ "server", " --embedding(s)", "enable embedding endpoint (default: %s)", params.embedding ? "enabled" : "disabled" }); options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" }); options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" }); options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" }); options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" }); options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read }); options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http }); options.push_back({ "server", " --system-prompt-file FNAME", "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" }); options.push_back({ "server", " --log-format {text,json}", "log output format: json or text (default: json)" }); options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" }); options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" }); options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" }); options.push_back({ "server", " --chat-template JINJA_TEMPLATE", "set custom jinja chat template (default: template taken from model's metadata)\n" "only commonly used templates are accepted:\n" "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" }); options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY", "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity }); #ifndef LOG_DISABLE_LOGS options.push_back({ "logging" }); options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" }); options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" }); options.push_back({ "logging", " --log-test", "Run simple logging test" }); options.push_back({ "logging", " --log-disable", "Disable trace logs" }); options.push_back({ "logging", " --log-enable", "Enable trace logs" }); options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" }); options.push_back({ "logging", " --log-new", "Create a separate new log file on start. " "Each log file will have unique name: \"..log\"" }); options.push_back({ "logging", " --log-append", "Don't truncate the old log file." }); #endif // LOG_DISABLE_LOGS options.push_back({ "cvector" }); options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() }); options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() }); options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() }); options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch }); options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations }); options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" }); printf("usage: %s [options]\n", argv[0]); for (const auto & o : options) { if (!o.grp.empty()) { printf("\n%s:\n\n", o.grp.c_str()); continue; } printf(" %-32s", o.args.c_str()); if (o.args.length() > 30) { printf("\n%34s", ""); } const auto desc = o.desc; size_t start = 0; size_t end = desc.find('\n'); while (end != std::string::npos) { printf("%s\n%34s", desc.substr(start, end - start).c_str(), ""); start = end + 1; end = desc.find('\n', start); } printf("%s\n", desc.substr(start).c_str()); } printf("\n"); } std::string gpt_params_get_system_info(const gpt_params & params) { std::ostringstream os; os << "system_info: n_threads = " << params.n_threads; if (params.n_threads_batch != -1) { os << " (n_threads_batch = " << params.n_threads_batch << ")"; } os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); return os.str(); } // // String utils // std::vector string_split(std::string input, char separator) { std::vector parts; size_t separator_pos = input.find(separator); while (separator_pos != std::string::npos) { std::string part = input.substr(0, separator_pos); parts.emplace_back(part); input = input.substr(separator_pos + 1); separator_pos = input.find(separator); } parts.emplace_back(input); return parts; } std::string string_strip(const std::string & str) { size_t start = 0; size_t end = str.size(); while (start < end && std::isspace(str[start])) { start++; } while (end > start && std::isspace(str[end - 1])) { end--; } return str.substr(start, end - start); } std::string string_get_sortable_timestamp() { using clock = std::chrono::system_clock; const clock::time_point current_time = clock::now(); const time_t as_time_t = clock::to_time_t(current_time); char timestamp_no_ns[100]; std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); const int64_t ns = std::chrono::duration_cast( current_time.time_since_epoch() % 1000000000).count(); char timestamp_ns[11]; snprintf(timestamp_ns, 11, "%09" PRId64, ns); return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } void string_process_escapes(std::string & input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { if (input[input_idx] == '\\' && input_idx + 1 < input_len) { switch (input[++input_idx]) { case 'n': input[output_idx++] = '\n'; break; case 'r': input[output_idx++] = '\r'; break; case 't': input[output_idx++] = '\t'; break; case '\'': input[output_idx++] = '\''; break; case '\"': input[output_idx++] = '\"'; break; case '\\': input[output_idx++] = '\\'; break; case 'x': // Handle \x12, etc if (input_idx + 2 < input_len) { const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; char *err_p = nullptr; const long val = std::strtol(x, &err_p, 16); if (err_p == x + 2) { input_idx += 2; input[output_idx++] = char(val); break; } } // fall through default: input[output_idx++] = '\\'; input[output_idx++] = input[input_idx]; break; } } else { input[output_idx++] = input[input_idx]; } } input.resize(output_idx); } bool string_parse_kv_override(const char * data, std::vector & overrides) { const char * sep = strchr(data, '='); if (sep == nullptr || sep - data >= 128) { fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); return false; } llama_model_kv_override kvo; std::strncpy(kvo.key, data, sep - data); kvo.key[sep - data] = 0; sep++; if (strncmp(sep, "int:", 4) == 0) { sep += 4; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; kvo.val_i64 = std::atol(sep); } else if (strncmp(sep, "float:", 6) == 0) { sep += 6; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; kvo.val_f64 = std::atof(sep); } else if (strncmp(sep, "bool:", 5) == 0) { sep += 5; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; if (std::strcmp(sep, "true") == 0) { kvo.val_bool = true; } else if (std::strcmp(sep, "false") == 0) { kvo.val_bool = false; } else { fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); return false; } } else if (strncmp(sep, "str:", 4) == 0) { sep += 4; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; if (strlen(sep) > 127) { fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); return false; } strncpy(kvo.val_str, sep, 127); kvo.val_str[127] = '\0'; } else { fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); return false; } overrides.emplace_back(std::move(kvo)); return true; } // // Filesystem utils // // Validate if a filename is safe to use // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function bool fs_validate_filename(const std::string & filename) { if (!filename.length()) { // Empty filename invalid return false; } if (filename.length() > 255) { // Limit at common largest possible filename on Linux filesystems // to avoid unnecessary further validation // (On systems with smaller limits it will be caught by the OS) return false; } std::u32string filename_utf32; try { std::wstring_convert, char32_t> converter; filename_utf32 = converter.from_bytes(filename); // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used, // or invalid encodings were encountered. Reject such attempts std::string filename_reencoded = converter.to_bytes(filename_utf32); if (filename_reencoded != filename) { return false; } } catch (const std::exception &) { return false; } // Check for forbidden codepoints: // - Control characters // - Unicode equivalents of illegal characters // - UTF-16 surrogate pairs // - UTF-8 replacement character // - Byte order mark (BOM) // - Illegal characters: / \ : * ? " < > | for (char32_t c : filename_utf32) { if (c <= 0x1F // Control characters (C0) || c == 0x7F // Control characters (DEL) || (c >= 0x80 && c <= 0x9F) // Control characters (C1) || c == 0xFF0E // Fullwidth Full Stop (period equivalent) || c == 0x2215 // Division Slash (forward slash equivalent) || c == 0x2216 // Set Minus (backslash equivalent) || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs || c == 0xFFFD // Replacement Character (UTF-8) || c == 0xFEFF // Byte Order Mark (BOM) || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') { return false; } } // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename // Unicode and other whitespace is not affected, only 0x20 space if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') { return false; } // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead) if (filename.find("..") != std::string::npos) { return false; } // Reject "." if (filename == ".") { return false; } return true; } // returns true if successful, false otherwise bool fs_create_directory_with_parents(const std::string & path) { #ifdef _WIN32 std::wstring_convert> converter; std::wstring wpath = converter.from_bytes(path); // if the path already exists, check whether it's a directory const DWORD attributes = GetFileAttributesW(wpath.c_str()); if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { return true; } size_t pos_slash = 0; // process path from front to back, procedurally creating directories while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { const std::wstring subpath = wpath.substr(0, pos_slash); const wchar_t * test = subpath.c_str(); const bool success = CreateDirectoryW(test, NULL); if (!success) { const DWORD error = GetLastError(); // if the path already exists, ensure that it's a directory if (error == ERROR_ALREADY_EXISTS) { const DWORD attributes = GetFileAttributesW(subpath.c_str()); if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { return false; } } else { return false; } } pos_slash += 1; } return true; #else // if the path already exists, check whether it's a directory struct stat info; if (stat(path.c_str(), &info) == 0) { return S_ISDIR(info.st_mode); } size_t pos_slash = 1; // skip leading slashes for directory creation // process path from front to back, procedurally creating directories while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { const std::string subpath = path.substr(0, pos_slash); struct stat info; // if the path already exists, ensure that it's a directory if (stat(subpath.c_str(), &info) == 0) { if (!S_ISDIR(info.st_mode)) { return false; } } else { // create parent directories const int ret = mkdir(subpath.c_str(), 0755); if (ret != 0) { return false; } } pos_slash += 1; } return true; #endif // _WIN32 } std::string fs_get_cache_directory() { std::string cache_directory = ""; auto ensure_trailing_slash = [](std::string p) { // Make sure to add trailing slash if (p.back() != DIRECTORY_SEPARATOR) { p += DIRECTORY_SEPARATOR; } return p; }; if (getenv("LLAMA_CACHE")) { cache_directory = std::getenv("LLAMA_CACHE"); } else { #ifdef __linux__ if (std::getenv("XDG_CACHE_HOME")) { cache_directory = std::getenv("XDG_CACHE_HOME"); } else { cache_directory = std::getenv("HOME") + std::string("/.cache/"); } #elif defined(__APPLE__) cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); #elif defined(_WIN32) cache_directory = std::getenv("LOCALAPPDATA"); #endif // __linux__ cache_directory = ensure_trailing_slash(cache_directory); cache_directory += "llama.cpp"; } return ensure_trailing_slash(cache_directory); } std::string fs_get_cache_file(const std::string & filename) { GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos); std::string cache_directory = fs_get_cache_directory(); const bool success = fs_create_directory_with_parents(cache_directory); if (!success) { throw std::runtime_error("failed to create cache directory: " + cache_directory); } return cache_directory + filename; } // // Model utils // std::tuple llama_init_from_gpt_params(gpt_params & params) { auto mparams = llama_model_params_from_gpt_params(params); llama_model * model = nullptr; if (!params.hf_repo.empty() && !params.hf_file.empty()) { model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams); } else if (!params.model_url.empty()) { model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams); } else { model = llama_load_model_from_file(params.model.c_str(), mparams); } if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return std::make_tuple(nullptr, nullptr); } auto cparams = llama_context_params_from_gpt_params(params); llama_context * lctx = llama_new_context_with_model(model, cparams); if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } if (!params.control_vectors.empty()) { if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model); const auto cvec = llama_control_vector_load(params.control_vectors); if (cvec.n_embd == -1) { llama_free(lctx); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } int err = llama_control_vector_apply(lctx, cvec.data.data(), cvec.data.size(), cvec.n_embd, params.control_vector_layer_start, params.control_vector_layer_end); if (err) { llama_free(lctx); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } } for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]); float lora_scale = std::get<1>(params.lora_adapter[i]); auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str()); if (adapter == nullptr) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); llama_free(lctx); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } llama_lora_adapter_set(lctx, adapter, lora_scale); } if (params.ignore_eos) { params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; } if (params.warmup) { LOG("warming up the model with an empty run\n"); std::vector tmp; llama_token bos = llama_token_bos(model); llama_token eos = llama_token_eos(model); // some models (e.g. T5) don't have a BOS token if (bos != -1) { tmp.push_back(bos); } tmp.push_back(eos); if (llama_model_has_encoder(model)) { llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0)); llama_token decoder_start_token_id = llama_model_decoder_start_token(model); if (decoder_start_token_id == -1) { decoder_start_token_id = bos; } tmp.clear(); tmp.push_back(decoder_start_token_id); } llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); llama_kv_cache_clear(lctx); llama_synchronize(lctx); llama_reset_timings(lctx); } return std::make_tuple(model, lctx); } struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { auto mparams = llama_model_default_params(); if (params.n_gpu_layers != -1) { mparams.n_gpu_layers = params.n_gpu_layers; } mparams.rpc_servers = params.rpc_servers.c_str(); mparams.main_gpu = params.main_gpu; mparams.split_mode = params.split_mode; mparams.tensor_split = params.tensor_split; mparams.use_mmap = params.use_mmap; mparams.use_mlock = params.use_mlock; mparams.check_tensors = params.check_tensors; if (params.kv_overrides.empty()) { mparams.kv_overrides = NULL; } else { GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key"); mparams.kv_overrides = params.kv_overrides.data(); } return mparams; } static ggml_type kv_cache_type_from_str(const std::string & s) { if (s == "f32") { return GGML_TYPE_F32; } if (s == "f16") { return GGML_TYPE_F16; } if (s == "q8_0") { return GGML_TYPE_Q8_0; } if (s == "q4_0") { return GGML_TYPE_Q4_0; } if (s == "q4_1") { return GGML_TYPE_Q4_1; } if (s == "iq4_nl") { return GGML_TYPE_IQ4_NL; } if (s == "q5_0") { return GGML_TYPE_Q5_0; } if (s == "q5_1") { return GGML_TYPE_Q5_1; } throw std::runtime_error("Invalid cache type: " + s); } struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { auto cparams = llama_context_default_params(); cparams.n_ctx = params.n_ctx; cparams.n_seq_max = params.n_parallel; cparams.n_batch = params.n_batch; cparams.n_ubatch = params.n_ubatch; cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; cparams.seed = params.seed; cparams.logits_all = params.logits_all; cparams.embeddings = params.embedding; cparams.rope_scaling_type = params.rope_scaling_type; cparams.rope_freq_base = params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale; cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.pooling_type = params.pooling_type; cparams.attention_type = params.attention_type; cparams.defrag_thold = params.defrag_thold; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.offload_kqv = !params.no_kv_offload; cparams.flash_attn = params.flash_attn; cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_v = kv_cache_type_from_str(params.cache_type_v); return cparams; } #ifdef LLAMA_USE_CURL static bool starts_with(const std::string & str, const std::string & prefix) { // While we wait for C++20's std::string::starts_with... return str.rfind(prefix, 0) == 0; } static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) { // Initialize libcurl std::unique_ptr curl(curl_easy_init(), &curl_easy_cleanup); if (!curl) { fprintf(stderr, "%s: error initializing libcurl\n", __func__); return false; } bool force_download = false; // Set the URL, allow to follow http redirection curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); // Check if hf-token or bearer-token was specified if (!hf_token.empty()) { std::string auth_header = "Authorization: Bearer "; auth_header += hf_token.c_str(); struct curl_slist *http_headers = NULL; http_headers = curl_slist_append(http_headers, auth_header.c_str()); curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers); } #if defined(_WIN32) // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of // operating system. Currently implemented under MS-Windows. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); #endif // Check if the file already exists locally struct stat model_file_info; auto file_exists = (stat(path.c_str(), &model_file_info) == 0); // If the file exists, check its JSON metadata companion file. std::string metadata_path = path + ".json"; nlohmann::json metadata; std::string etag; std::string last_modified; if (file_exists) { // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block). std::ifstream metadata_in(metadata_path); if (metadata_in.good()) { try { metadata_in >> metadata; fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str()); if (metadata.contains("url") && metadata.at("url").is_string()) { auto previous_url = metadata.at("url").get(); if (previous_url != url) { fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str()); return false; } } if (metadata.contains("etag") && metadata.at("etag").is_string()) { etag = metadata.at("etag"); } if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) { last_modified = metadata.at("lastModified"); } } catch (const nlohmann::json::exception & e) { fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); return false; } } } else { fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str()); } // Send a HEAD request to retrieve the etag and last-modified headers struct llama_load_model_from_url_headers { std::string etag; std::string last_modified; }; llama_load_model_from_url_headers headers; { typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *); auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata; static std::regex header_regex("([^:]+): (.*)\r\n"); static std::regex etag_regex("ETag", std::regex_constants::icase); static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); std::string header(buffer, n_items); std::smatch match; if (std::regex_match(header, match, header_regex)) { const std::string & key = match[1]; const std::string & value = match[2]; if (std::regex_match(key, match, etag_regex)) { headers->etag = value; } else if (std::regex_match(key, match, last_modified_regex)) { headers->last_modified = value; } } return n_items; }; curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast(header_callback)); curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); CURLcode res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); return false; } long http_code = 0; curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code != 200) { // HEAD not supported, we don't know if the file has changed // force trigger downloading force_download = true; fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code); } } bool should_download = !file_exists || force_download; if (!should_download) { if (!etag.empty() && etag != headers.etag) { fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str()); should_download = true; } else if (!last_modified.empty() && last_modified != headers.last_modified) { fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str()); should_download = true; } } if (should_download) { std::string path_temporary = path + ".downloadInProgress"; if (file_exists) { fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); if (remove(path.c_str()) != 0) { fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str()); return false; } } // Set the output file struct FILE_deleter { void operator()(FILE * f) const { fclose(f); } }; std::unique_ptr outfile(fopen(path_temporary.c_str(), "wb")); if (!outfile) { fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str()); return false; } typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd); auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t { return fwrite(data, size, nmemb, (FILE *)fd); }; curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L); curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast(write_callback)); curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get()); // display download progress curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L); // helper function to hide password in URL auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string { std::size_t protocol_pos = url.find("://"); if (protocol_pos == std::string::npos) { return url; // Malformed URL } std::size_t at_pos = url.find('@', protocol_pos + 3); if (at_pos == std::string::npos) { return url; // No password in URL } return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos); }; // start the download fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str()); auto res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); return false; } long http_code = 0; curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code < 200 || http_code >= 400) { fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code); return false; } // Causes file to be closed explicitly here before we rename it. outfile.reset(); // Write the updated JSON metadata file. metadata.update({ {"url", url}, {"etag", headers.etag}, {"lastModified", headers.last_modified} }); std::ofstream(metadata_path) << metadata.dump(4); fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str()); if (rename(path_temporary.c_str(), path.c_str()) != 0) { fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); return false; } } return true; } struct llama_model * llama_load_model_from_url( const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params) { // Basic validation of the model_url if (!model_url || strlen(model_url) == 0) { fprintf(stderr, "%s: invalid model_url\n", __func__); return NULL; } if (!llama_download_file(model_url, path_model, hf_token)) { return NULL; } // check for additional GGUFs split to download int n_split = 0; { struct gguf_init_params gguf_params = { /*.no_alloc = */ true, /*.ctx = */ NULL, }; auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params); if (!ctx_gguf) { fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model); return NULL; } auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); if (key_n_split >= 0) { n_split = gguf_get_val_u16(ctx_gguf, key_n_split); } gguf_free(ctx_gguf); } if (n_split > 1) { char split_prefix[PATH_MAX] = {0}; char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0}; // Verify the first split file format // and extract split URL and PATH prefixes { if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) { fprintf(stderr, "\n%s: unexpected model file name: %s" " n_split=%d\n", __func__, path_model, n_split); return NULL; } if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) { fprintf(stderr, "\n%s: unexpected model url: %s" " n_split=%d\n", __func__, model_url, n_split); return NULL; } } // Prepare download in parallel std::vector> futures_download; for (int idx = 1; idx < n_split; idx++) { futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool { char split_path[PATH_MAX] = {0}; llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split); char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0}; llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split); return llama_download_file(split_url, split_path, hf_token); }, idx)); } // Wait for all downloads to complete for (auto & f : futures_download) { if (!f.get()) { return NULL; } } } return llama_load_model_from_file(path_model, params); } struct llama_model * llama_load_model_from_hf( const char * repo, const char * model, const char * path_model, const char * hf_token, const struct llama_model_params & params) { // construct hugging face model url: // // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf // // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf // std::string model_url = "https://huggingface.co/"; model_url += repo; model_url += "/resolve/main/"; model_url += model; return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params); } #else struct llama_model * llama_load_model_from_url( const char * /*model_url*/, const char * /*path_model*/, const char * /*hf_token*/, const struct llama_model_params & /*params*/) { fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__); return nullptr; } struct llama_model * llama_load_model_from_hf( const char * /*repo*/, const char * /*model*/, const char * /*path_model*/, const char * /*hf_token*/, const struct llama_model_params & /*params*/) { fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__); return nullptr; } #endif // LLAMA_USE_CURL // // Batch utils // void llama_batch_clear(struct llama_batch & batch) { batch.n_tokens = 0; } void llama_batch_add( struct llama_batch & batch, llama_token id, llama_pos pos, const std::vector & seq_ids, bool logits) { batch.token [batch.n_tokens] = id; batch.pos [batch.n_tokens] = pos; batch.n_seq_id[batch.n_tokens] = seq_ids.size(); for (size_t i = 0; i < seq_ids.size(); ++i) { batch.seq_id[batch.n_tokens][i] = seq_ids[i]; } batch.logits [batch.n_tokens] = logits; batch.n_tokens++; } // // Vocab utils // std::vector llama_tokenize( const struct llama_context * ctx, const std::string & text, bool add_special, bool parse_special) { return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special); } std::vector llama_tokenize( const struct llama_model * model, const std::string & text, bool add_special, bool parse_special) { // upper limit for the number of tokens int n_tokens = text.length() + 2 * add_special; std::vector result(n_tokens); n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { std::string piece; piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n' const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special); if (n_chars < 0) { piece.resize(-n_chars); int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special); GGML_ASSERT(check == -n_chars); } else { piece.resize(n_chars); } return piece; } std::string llama_detokenize(llama_context * ctx, const std::vector & tokens, bool special) { std::string text; text.resize(std::max(text.capacity(), tokens.size())); int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); if (n_chars < 0) { text.resize(-n_chars); n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization } text.resize(n_chars); // NOTE: the original tokenizer decodes bytes after collecting the pieces. return text; } bool llama_should_add_bos_token(const llama_model * model) { const int add_bos = llama_add_bos_token(model); return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); } // // Chat template utils // bool llama_chat_verify_template(const std::string & tmpl) { llama_chat_message chat[] = {{"user", "test"}}; int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); return res >= 0; } std::string llama_chat_apply_template(const struct llama_model * model, const std::string & tmpl, const std::vector & msgs, bool add_ass) { int alloc_size = 0; bool fallback = false; // indicate if we must fallback to default chatml std::vector chat; for (auto & msg : msgs) { chat.push_back({msg.role.c_str(), msg.content.c_str()}); alloc_size += (msg.role.size() + msg.content.size()) * 1.25; } const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); std::vector buf(alloc_size); // run the first time to get the total output length int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size()); // error: chat template is not supported if (res < 0) { if (ptr_tmpl != nullptr) { // if the custom "tmpl" is not supported, we throw an error // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template() throw std::runtime_error("this custom template is not supported"); } else { // If the built-in template is not supported, we default to chatml res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size()); fallback = true; } } // if it turns out that our buffer is too small, we resize it if ((size_t) res > buf.size()) { buf.resize(res); res = llama_chat_apply_template( fallback ? nullptr : model, fallback ? "chatml" : ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size()); } std::string formatted_chat(buf.data(), res); return formatted_chat; } std::string llama_chat_format_single(const struct llama_model * model, const std::string & tmpl, const std::vector & past_msg, const llama_chat_msg & new_msg, bool add_ass) { std::ostringstream ss; auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false); std::vector chat_new(past_msg); // if the past_msg ends with a newline, we must preserve it in the formatted version if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') { ss << "\n"; }; // format chat with new_msg chat_new.push_back(new_msg); auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass); // get the diff part ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size()); return ss.str(); } std::string llama_chat_format_example(const struct llama_model * model, const std::string & tmpl) { std::vector msgs = { {"system", "You are a helpful assistant"}, {"user", "Hello"}, {"assistant", "Hi there"}, {"user", "How are you?"}, }; return llama_chat_apply_template(model, tmpl, msgs, true); } // // KV cache utils // void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d", view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); llama_kv_cache_view_cell * c_curr = view.cells; llama_seq_id * cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { if (i % row_size == 0) { printf("\n%5d: ", i); } int seq_count = 0; for (int j = 0; j < view.n_seq_max; j++) { if (cs_curr[j] >= 0) { seq_count++; } } putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]); } printf("\n=== Done dumping\n"); } void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) { static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n", view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); std::unordered_map seqs; llama_kv_cache_view_cell * c_curr = view.cells; llama_seq_id * cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { for (int j = 0; j < view.n_seq_max; j++) { if (cs_curr[j] < 0) { continue; } if (seqs.find(cs_curr[j]) == seqs.end()) { if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } const size_t sz = seqs.size(); seqs[cs_curr[j]] = sz; } } if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } } printf("=== Sequence legend: "); for (const auto & it : seqs) { printf("%zu=%d, ", it.second, it.first); } printf("'+'=other sequence ids"); c_curr = view.cells; cs_curr = view.cells_sequences; for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { if (i % row_size == 0) { printf("\n%5d: ", i); } for (int j = 0; j < view.n_seq_max; j++) { if (cs_curr[j] >= 0) { const auto & it = seqs.find(cs_curr[j]); putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+'); } else { putchar('.'); } } putchar(' '); } printf("\n=== Done dumping\n"); } // // Embedding utils // void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) { double sum = 0.0; switch (embd_norm) { case -1: // no normalisation sum = 1.0; break; case 0: // max absolute for (int i = 0; i < n; i++) { if (sum < std::abs(inp[i])) sum = std::abs(inp[i]); } sum /= 32760.0; // make an int16 range break; case 2: // euclidean for (int i = 0; i < n; i++) { sum += inp[i] * inp[i]; } sum = std::sqrt(sum); break; default: // p-norm (euclidean is p-norm p=2) for (int i = 0; i < n; i++) { sum += std::pow(std::abs(inp[i]), embd_norm); } sum = std::pow(sum, 1.0 / embd_norm); break; } const float norm = sum > 0.0 ? 1.0 / sum : 0.0f; for (int i = 0; i < n; i++) { out[i] = inp[i] * norm; } } float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){ double sum = 0.0; double sum1 = 0.0; double sum2 = 0.0; for (int i = 0; i < n; i++) { sum += embd1[i] * embd2[i]; sum1 += embd1[i] * embd1[i]; sum2 += embd2[i] * embd2[i]; } // Handle the case where one or both vectors are zero vectors if (sum1 == 0.0 || sum2 == 0.0) { if (sum1 == 0.0 && sum2 == 0.0) { return 1.0f; // two zero vectors are similar } return 0.0f; } return sum / (sqrt(sum1) * sqrt(sum2)); } // // Control vector utils // static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) { llama_control_vector_data result = { -1, {} }; ggml_context * ctx = nullptr; struct gguf_init_params meta_gguf_params = { /* .no_alloc = */ false, /* .ctx = */ &ctx, }; struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params); if (!ctx_gguf) { fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str()); return result; } int32_t n_tensors = gguf_get_n_tensors(ctx_gguf); if (n_tensors == 0) { fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str()); } for (int i = 0; i < n_tensors; i++) { std::string name = gguf_get_tensor_name(ctx_gguf, i); int layer_idx = -1; // split on '.' size_t dotpos = name.find('.'); if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") { try { layer_idx = std::stoi(name.substr(dotpos + 1)); } catch (...) { layer_idx = -1; } } if (layer_idx < 0) { fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } else if (layer_idx == 0) { fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str()); if (tensor->type != GGML_TYPE_F32) { fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } if (ggml_n_dims(tensor) != 1) { fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } if (result.n_embd == -1) { result.n_embd = ggml_nelements(tensor); } else if (ggml_nelements(tensor) != result.n_embd) { fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str()); result.n_embd = -1; break; } // extend if necessary - do not store data for layer 0 (it's not used) result.data.resize(std::max(result.data.size(), static_cast(result.n_embd * layer_idx)), 0.0f); const float * src = (const float *) tensor->data; float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0] for (int j = 0; j < result.n_embd; j++) { dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file } } if (result.n_embd == -1) { fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str()); result.data.clear(); } gguf_free(ctx_gguf); ggml_free(ctx); return result; } llama_control_vector_data llama_control_vector_load(const std::vector & load_infos) { llama_control_vector_data result = { -1, {} }; for (const auto & info : load_infos) { auto cur = llama_control_vector_load_one(info); if (cur.n_embd == -1) { result.n_embd = -1; break; } if (result.n_embd != -1 && result.n_embd != cur.n_embd) { fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str()); result.n_embd = -1; break; } if (result.n_embd == -1) { result = std::move(cur); } else { result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary for (size_t i = 0; i < cur.data.size(); i++) { result.data[i] += cur.data[i]; } } } if (result.n_embd == -1) { fprintf(stderr, "%s: no valid control vector files passed\n", __func__); result.data.clear(); } return result; } // // YAML utils // void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%e, ", data[i]); } fprintf(stream, "%e]\n", data.back()); } void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%d, ", data[i]); } fprintf(stream, "%d]\n", data.back()); } void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) { std::string data_str(data == NULL ? "" : data); if (data_str.empty()) { fprintf(stream, "%s:\n", prop_name); return; } size_t pos_start = 0; size_t pos_found = 0; if (std::isspace(data_str[0]) || std::isspace(data_str.back())) { data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); data_str = "\"" + data_str + "\""; fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } if (data_str.find('\n') == std::string::npos) { fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } fprintf(stream, "%s: |\n", prop_name); while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); pos_start = pos_found + 1; } } void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { const llama_sampling_params & sparams = params.sparams; fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false"); fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); #ifdef NDEBUG fprintf(stream, "debug: false\n"); #else fprintf(stream, "debug: true\n"); #endif // NDEBUG fprintf(stream, "model_desc: %s\n", model_desc); fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); #ifdef __OPTIMIZE__ fprintf(stream, "optimize: true\n"); #else fprintf(stream, "optimize: false\n"); #endif // __OPTIMIZE__ fprintf(stream, "time: %s\n", timestamp.c_str()); fprintf(stream, "\n"); fprintf(stream, "###############\n"); fprintf(stream, "# User Inputs #\n"); fprintf(stream, "###############\n"); fprintf(stream, "\n"); fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str()); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx))); const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str()); fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str()); fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); fprintf(stream, "keep: %d # default: 0\n", params.n_keep); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logit_bias:\n"); for (std::pair lb : sparams.logit_bias) { if (ignore_eos && lb.first == logit_bias_eos->first) { continue; } fprintf(stream, " %d: %f", lb.first, lb.second); } fprintf(stream, "lora:\n"); for (std::tuple la : params.lora_adapter) { if (std::get<1>(la) != 1.0f) { continue; } fprintf(stream, " - %s\n", std::get<0>(la).c_str()); } fprintf(stream, "lora_scaled:\n"); for (std::tuple la : params.lora_adapter) { if (std::get<1>(la) == 1.0f) { continue; } fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); } fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens); fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); fprintf(stream, "reverse_prompt:\n"); for (std::string ap : params.antiprompt) { size_t pos = 0; while ((pos = ap.find('\n', pos)) != std::string::npos) { ap.replace(pos, 1, "\\n"); pos += 1; } fprintf(stream, " - %s\n", ap.c_str()); } fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector); fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency()); fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); }