#include "ggml-alloc.h" #include "ggml-backend-impl.h" #include "ggml.h" #include "ggml-impl.h" #include <assert.h> #include <limits.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX_FREE_BLOCKS 256 //#define GGML_ALLOCATOR_DEBUG //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) #define AT_PRINTF(...) // TODO: GGML_PAD ? static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { assert(alignment && !(alignment & (alignment - 1))); // power of 2 size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; return offset + align; } struct free_block { void * addr; size_t size; }; struct ggml_tallocr { struct ggml_backend_buffer * buffer; bool buffer_owned; void * base; size_t alignment; int n_free_blocks; struct free_block free_blocks[MAX_FREE_BLOCKS]; size_t max_size; bool measure; #ifdef GGML_ALLOCATOR_DEBUG struct ggml_tensor * allocated_tensors[1024]; #endif }; #ifdef GGML_ALLOCATOR_DEBUG static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i] == NULL) { alloc->allocated_tensors[i] = tensor; return; } } GGML_ASSERT(!"out of allocated_tensors"); } static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i] == tensor || (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { alloc->allocated_tensors[i] = NULL; return; } } printf("tried to free tensor %s not found\n", tensor->name); GGML_ASSERT(!"tensor not found"); } #endif // check if a tensor is allocated by this buffer static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) { return tensor->buffer == alloc->buffer; } static bool ggml_is_view(struct ggml_tensor * t) { return t->view_src != NULL; } void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); size_t max_avail = 0; // find the best fitting free block besides the last block int best_fit_block = -1; size_t best_fit_size = SIZE_MAX; for (int i = 0; i < alloc->n_free_blocks - 1; i++) { struct free_block * block = &alloc->free_blocks[i]; max_avail = MAX(max_avail, block->size); if (block->size >= size && block->size <= best_fit_size) { best_fit_block = i; best_fit_size = block->size; } } AT_PRINTF("block %d\n", best_fit_block); if (best_fit_block == -1) { // the last block is our last resort struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; max_avail = MAX(max_avail, block->size); if (block->size >= size) { best_fit_block = alloc->n_free_blocks - 1; } else { fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", __func__, size, max_avail); GGML_ASSERT(!"not enough space in the buffer"); return; } } struct free_block * block = &alloc->free_blocks[best_fit_block]; void * addr = block->addr; block->addr = (char*)block->addr + size; block->size -= size; if (block->size == 0) { // remove block if empty alloc->n_free_blocks--; for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } tensor->data = addr; tensor->buffer = alloc->buffer; if (!alloc->measure) { ggml_backend_buffer_init_tensor(alloc->buffer, tensor); } #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, tensor); size_t cur_max = (char*)addr - (char*)alloc->data + size; if (cur_max > alloc->max_size) { printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i]) { printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); } } printf("\n"); } #endif alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size); } // this is a very naive implementation, but for our case the number of free blocks should be very small static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { if (ggml_tallocr_is_own(alloc, tensor) == false) { // the tensor was not allocated in this buffer // this can happen because the graph allocator will try to free weights and other tensors from different buffers // the easiest way to deal with this is just to ignore it // AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer); return; } void * ptr = tensor->data; size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); if (!alloc->measure) { ggml_backend_buffer_free_tensor(alloc->buffer, tensor); } #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, tensor); #endif // see if we can merge with an existing block for (int i = 0; i < alloc->n_free_blocks; i++) { struct free_block * block = &alloc->free_blocks[i]; // check if ptr is at the end of the block if ((char*)block->addr + block->size == ptr) { block->size += size; // check if we can merge with the next block if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { block->size += alloc->free_blocks[i+1].size; alloc->n_free_blocks--; for (int j = i+1; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } return; } // check if ptr is at the beginning of the block if ((char*)ptr + size == block->addr) { block->addr = ptr; block->size += size; // check if we can merge with the previous block if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { alloc->free_blocks[i-1].size += block->size; alloc->n_free_blocks--; for (int j = i; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } return; } } // otherwise, add a new block GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) int insert_pos = 0; while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { insert_pos++; } // shift all blocks from insert_pos onward to make room for the new block for (int i = alloc->n_free_blocks; i > insert_pos; i--) { alloc->free_blocks[i] = alloc->free_blocks[i-1]; } // insert the new block alloc->free_blocks[insert_pos].addr = ptr; alloc->free_blocks[insert_pos].size = size; alloc->n_free_blocks++; } void ggml_tallocr_reset(ggml_tallocr_t alloc) { alloc->n_free_blocks = 1; size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment); alloc->free_blocks[0].addr = (char *)alloc->base + align_offset; if (alloc->measure) { alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows } else { alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; } } ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) { struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size); ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); *alloc = (struct ggml_tallocr) { /*.buffer = */ buffer, /*.buffer_owned = */ true, /*.base = */ ggml_backend_buffer_get_base(buffer), /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.max_size = */ 0, /*.measure = */ false, #ifdef GGML_ALLOCATOR_DEBUG /*.allocated_tensors = */ {0}, #endif }; ggml_tallocr_reset(alloc); return alloc; } ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) { ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment); alloc->measure = true; return alloc; } ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) { // create a backend buffer to get the correct tensor allocation sizes ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1); // TODO: move alloc initialization to a common ggml_tallocr_new_impl function ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); alloc->buffer_owned = true; alloc->measure = true; ggml_tallocr_reset(alloc); return alloc; } ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) { ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size); ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); alloc->buffer_owned = true; return alloc; } ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) { ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); *alloc = (struct ggml_tallocr) { /*.buffer = */ buffer, /*.buffer_owned = */ false, /*.base = */ ggml_backend_buffer_get_base(buffer), /*.alignment = */ ggml_backend_buffer_get_alignment(buffer), /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.max_size = */ 0, /*.measure = */ false, #ifdef GGML_ALLOCATOR_DEBUG /*.allocated_tensors = */ {0}, #endif }; ggml_tallocr_reset(alloc); return alloc; } struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) { return alloc->buffer; } void ggml_tallocr_free(ggml_tallocr_t alloc) { if (alloc == NULL) { return; } if (alloc->buffer_owned) { ggml_backend_buffer_free(alloc->buffer); } free(alloc); } bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) { return alloc->measure; } size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) { return alloc->max_size; } // graph allocator struct hash_node { int n_children; int n_views; }; struct ggml_gallocr { ggml_tallocr_t talloc; struct ggml_hash_set hash_set; struct hash_node * hash_values; size_t hash_values_size; ggml_tallocr_t * hash_allocs; int * parse_seq; int parse_seq_len; }; ggml_gallocr_t ggml_gallocr_new(void) { ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr)); *galloc = (struct ggml_gallocr) { /*.talloc = */ NULL, /*.hash_set = */ {0}, /*.hash_values = */ NULL, /*.hash_values_size = */ 0, /*.hash_allocs = */ NULL, /*.parse_seq = */ NULL, /*.parse_seq_len = */ 0, }; return galloc; } void ggml_gallocr_free(ggml_gallocr_t galloc) { if (galloc == NULL) { return; } if (galloc->hash_set.keys != NULL) { free(galloc->hash_set.keys); } if (galloc->hash_values != NULL) { free(galloc->hash_values); } if (galloc->hash_allocs != NULL) { free(galloc->hash_allocs); } if (galloc->parse_seq != NULL) { free(galloc->parse_seq); } free(galloc); } void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) { free(galloc->parse_seq); galloc->parse_seq = malloc(sizeof(int) * n); for (int i = 0; i < n; i++) { galloc->parse_seq[i] = list[i]; } galloc->parse_seq_len = n; } static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); return &galloc->hash_values[i]; } static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; } for (int i = 0; i < GGML_MAX_DIMS; i++) { if (a->ne[i] != b->ne[i]) { return false; } if (a->nb[i] != b->nb[i]) { return false; } } return true; } static bool ggml_op_can_inplace(enum ggml_op op) { switch (op) { case GGML_OP_SCALE: case GGML_OP_DIAG_MASK_ZERO: case GGML_OP_DIAG_MASK_INF: case GGML_OP_ADD: case GGML_OP_ADD1: case GGML_OP_SUB: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_SQR: case GGML_OP_SQRT: case GGML_OP_LOG: case GGML_OP_UNARY: case GGML_OP_ROPE: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: return true; default: return false; } } static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) { if (galloc->talloc != NULL) { return galloc->talloc; } return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)]; } static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) { ggml_tallocr_t alloc = node_tallocr(galloc, view); //printf("init_view: %s from src %s\n", view->name, view->view_src->name); GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL); if (update_backend) { view->backend = view->view_src->backend; } view->buffer = view->view_src->buffer; view->data = (char *)view->view_src->data + view->view_offs; // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend); if (!alloc->measure) { ggml_backend_buffer_init_tensor(alloc->buffer, view); } } static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { ggml_tallocr_t alloc = node_tallocr(galloc, node); if (node->data == NULL) { if (ggml_is_view(node)) { init_view(galloc, node, true); } else { // see if we can reuse a parent's buffer (inplace) if (ggml_op_can_inplace(node->op)) { for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * parent = node->src[i]; if (parent == NULL) { break; } // if the node's data is external, then we cannot re-use it if (ggml_tallocr_is_own(alloc, parent) == false) { AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); continue; } struct hash_node * p_hn = hash_get(galloc, parent); if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { if (ggml_is_view(parent)) { struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = hash_get(galloc, view_src); if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite // the parent's data that it will need later (same layout requirement). the problem is that then // we cannot free the tensor because the original address of the allocation is lost. // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); node->view_src = view_src; view_src_hn->n_views += 1; init_view(galloc, node, false); return; } } else { AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); node->view_src = parent; p_hn->n_views += 1; init_view(galloc, node, false); return; } } } } ggml_tallocr_alloc(alloc, node); } } } static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { ggml_tallocr_t alloc = node_tallocr(galloc, node); ggml_tallocr_free_tensor(alloc, node); } static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) { const int * parse_seq = galloc->parse_seq; int parse_seq_len = galloc->parse_seq_len; // count number of children and views for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; if (ggml_is_view(node)) { struct ggml_tensor * view_src = node->view_src; hash_get(galloc, view_src)->n_views += 1; if (node->buffer == NULL && node->data != NULL) { // view of a pre-allocated tensor, didn't call init_view() yet init_view(galloc, node, true); } } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } hash_get(galloc, parent)->n_children += 1; if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) { init_view(galloc, parent, true); } } } // allocate tensors // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers int last_barrier_pos = 0; int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes; for (int ind = 0; ind < n_nodes; ind++) { // allocate a node if there is no parse_seq or this is not a barrier if (parse_seq_len == 0 || parse_seq[ind] != -1) { int i = parse_seq_len ? parse_seq[ind] : ind; struct ggml_tensor * node = gf->nodes[i]; // allocate parents (leafs) for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } allocate_node(galloc, parent); } // allocate node allocate_node(galloc, node); AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } AT_PRINTF("%s", parent->name); if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { AT_PRINTF(", "); } } AT_PRINTF("\n"); } // update parents // update immediately if there is no parse_seq // update only at barriers if there is parse_seq if ((parse_seq_len == 0) || parse_seq[ind] == -1) { int update_start = parse_seq_len ? last_barrier_pos : ind; int update_end = parse_seq_len ? ind : ind + 1; for (int i = update_start; i < update_end; i++) { int node_i = parse_seq_len ? parse_seq[i] : i; struct ggml_tensor * node = gf->nodes[node_i]; for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } struct hash_node * p_hn = hash_get(galloc, parent); p_hn->n_children -= 1; //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); if (p_hn->n_children == 0 && p_hn->n_views == 0) { if (ggml_is_view(parent)) { struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = hash_get(galloc, view_src); view_src_hn->n_views -= 1; AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) { free_node(galloc, view_src); } } else { free_node(galloc, parent); } } } } AT_PRINTF("\n"); if (parse_seq_len) { last_barrier_pos = ind + 1; } } } } size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) { size_t hash_size = graph->visited_hash_table.size; // check if the hash table is initialized and large enough if (galloc->hash_set.size < hash_size) { if (galloc->hash_set.keys != NULL) { free(galloc->hash_set.keys); } if (galloc->hash_values != NULL) { free(galloc->hash_values); } galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size); galloc->hash_set.size = hash_size; galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size); } // reset hash table memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size); memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size); galloc->talloc = talloc; ggml_tallocr_alloc_graph_impl(galloc, graph); galloc->talloc = NULL; size_t max_size = ggml_tallocr_max_size(talloc); return max_size; } void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) { const size_t hash_size = hash_set.size; GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs)); galloc->talloc = NULL; // alloc hash_values if needed if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) { free(galloc->hash_values); galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size); galloc->hash_values_size = hash_size; } // free hash_set.keys if needed if (galloc->hash_set.keys != NULL) { free(galloc->hash_set.keys); } galloc->hash_set = hash_set; // reset hash values memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size); galloc->hash_allocs = hash_node_talloc; ggml_tallocr_alloc_graph_impl(galloc, graph); // remove unowned resources galloc->hash_set.keys = NULL; galloc->hash_allocs = NULL; } // legacy API wrapper struct ggml_allocr { ggml_tallocr_t talloc; ggml_gallocr_t galloc; }; static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) { ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr)); *alloc = (struct ggml_allocr) { /*.talloc = */ talloc, /*.galloc = */ ggml_gallocr_new(), }; return alloc; } ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) { return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment)); } ggml_allocr_t ggml_allocr_new_measure(size_t alignment) { return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment)); } ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) { return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer)); } ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) { return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size)); } ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) { return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend)); } struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) { return ggml_tallocr_get_buffer(alloc->talloc); } void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) { ggml_gallocr_set_parse_seq(alloc->galloc, list, n); } void ggml_allocr_free(ggml_allocr_t alloc) { ggml_gallocr_free(alloc->galloc); ggml_tallocr_free(alloc->talloc); free(alloc); } bool ggml_allocr_is_measure(ggml_allocr_t alloc) { return ggml_tallocr_is_measure(alloc->talloc); } void ggml_allocr_reset(ggml_allocr_t alloc) { ggml_tallocr_reset(alloc->talloc); } void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) { ggml_tallocr_alloc(alloc->talloc, tensor); } size_t ggml_allocr_max_size(ggml_allocr_t alloc) { return ggml_tallocr_max_size(alloc->talloc); } size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) { return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph); }