#include "ggml.h" #include "llama.h" #ifdef NDEBUG #undef NDEBUG #endif #include <algorithm> #include <cmath> #include <string> #include <vector> static void dump(const llama_token_data_array * candidates) { for (size_t i = 0; i < candidates->size; i++) { printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); } } #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0) static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) { const size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); llama_sample_top_k(nullptr, &candidates_p, k, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5); } } static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { const size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); llama_sample_top_p(nullptr, &candidates_p, p, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) { const size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; DUMP(&candidates_p); llama_sample_tail_free(nullptr, &candidates_p, z, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { const size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; DUMP(&candidates_p); llama_sample_min_p(nullptr, &candidates_p, p, 1); DUMP(&candidates_p); llama_sample_softmax(nullptr, &candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { const size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; DUMP(&candidates_p); llama_sample_typical(nullptr, &candidates_p, p, 1); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_repetition_penalties( const std::vector<float> & probs, const std::vector<llama_token> & last_tokens, const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence ) { GGML_ASSERT(probs.size() == expected_probs.size()); const size_t n_vocab = probs.size(); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(probs[token_id]); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence); llama_sample_softmax(nullptr, &candidates_p); DUMP(&candidates_p); GGML_ASSERT(candidates_p.size == expected_probs.size()); for (size_t i = 0; i < candidates_p.size; i++) { GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); } } static void test_sampler_queue( const size_t n_vocab, const std::string samplers_sequence, const int top_k, const float top_p, const float min_p ) { std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { const float logit = logf(token_id); candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token min_token_id = 0; const llama_token max_token_id = n_vocab-1; for (auto s : samplers_sequence) { switch (s){ case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break; case 'f': GGML_ASSERT(false && "tail_free test not implemented"); break; case 'y': GGML_ASSERT(false && "typical test not implemented"); break; case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break; case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break; case 't': GGML_ASSERT(false && "temperature test not implemented"); break; default : GGML_ASSERT(false && "Unknown sampler"); break; } llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests const int size = candidates_p.size; if (s == 'k') { const int expected_size = std::min(size, top_k); min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k)); GGML_ASSERT(size == expected_size); GGML_ASSERT(candidates_p.data[0].id == max_token_id); GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id); } else if (s == 'p') { const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2; const int softmax_numerator_target = ceilf(top_p * softmax_divisor); min_token_id = n_vocab; int expected_size = 0; int cumsum = 0; do { // do-while because always at least one token is sampled min_token_id--; expected_size++; cumsum += min_token_id; } while (cumsum < softmax_numerator_target); // token 0 has p == 0, need special consideration for cumsum because top_p immediately returns if (min_token_id == 1) { min_token_id--; expected_size += 1; } GGML_ASSERT(size == expected_size); GGML_ASSERT(candidates_p.data[0].id == max_token_id); GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id); } else if (s == 'm') { int expected_size = ceilf((1.0f-min_p) * n_vocab); expected_size = std::max(expected_size, 1); expected_size = std::min(expected_size, size); min_token_id = floorf(min_p * n_vocab); min_token_id = std::max(min_token_id, 1); min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size)); min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1)); GGML_ASSERT(size == expected_size); GGML_ASSERT(candidates_p.data[0].id == max_token_id); GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id); } else { GGML_ASSERT(false); } } printf("Sampler queue %3s OK with n_vocab=%05ld top_k=%05d top_p=%f min_p=%f\n", samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p); } int main(void) { ggml_time_init(); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f); test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f); test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f); test_sampler_queue(10000, "k", 1, 1.0f, 1.0f); test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f); test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f); test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f); test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12); test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f); test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f); test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f); test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f); test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f); test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f); test_sampler_queue(10000, "km", 100, 0.8f, 0.1f); test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f); test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f); test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f); test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f); test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f); test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f); test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f); test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f); test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f); test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f); test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f); printf("OK\n"); return 0; }