#include "clip.h" #include "common.h" #include "llama.h" #include "minicpmv.h" #include "base64.hpp" #include #include #include #include // RGB uint8 image struct clip_image_u8 { int nx; int ny; std::vector buf; }; // RGB float32 image (NHWC) // Memory layout: RGBRGBRGB... struct clip_image_f32 { int nx; int ny; std::vector buf; }; struct clip_image_grid_shape { int first; int second; }; // /** // * Selects the best resolution from a list of possible resolutions based on the original size. // * // * @param original_size The original size of the image in the format (width, height). // * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. // * @return The best fit resolution in the format (width, height). // */ // static std::pair select_best_resolution(const std::pair& original_size, const std::vector>& possible_resolutions) { // int original_width = original_size.first; // int original_height = original_size.second; // std::pair best_fit; // int max_effective_resolution = 0; // int min_wasted_resolution = std::numeric_limits::max(); // for (const auto& resolution : possible_resolutions) { // int width = resolution.first; // int height = resolution.second; // float scale = std::min(static_cast(width) / original_width, static_cast(height) / original_height); // int downscaled_width = static_cast(original_width * scale); // int downscaled_height = static_cast(original_height * scale); // int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); // int wasted_resolution = (width * height) - effective_resolution; // // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); // if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { // max_effective_resolution = effective_resolution; // min_wasted_resolution = wasted_resolution; // best_fit = resolution; // } // } // return best_fit; // } // /** // * @brief Get the anyres image grid shape object // * // * @param image_size // * @param grid_pinpoints // * @param image_patch_size // * @return // */ // static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair & image_size, const std::vector> & grid_pinpoints, int image_patch_size) { // /** // Conversion from gguf flat array to vector: // std::vector> possible_resolutions; // for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) { // possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); // } // */ // auto best_resolution = select_best_resolution(image_size, grid_pinpoints); // return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size}; // } // // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out) // static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) { // struct { // struct ggml_tensor * newline; // struct ggml_context * ctx; // } model; // const int32_t image_size = clip_image_size(ctx_clip); // const int32_t patch_size = clip_patch_size(ctx_clip); // int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches) // int num_patches_width = grid_shape.first; // grid 1-4 // int num_patches_height = grid_shape.second; // grid 1-4 // const size_t num_images = num_patches_width * num_patches_height + 1; // // TODO: size calculation is not calculated - it's only tens of MB // size_t ctx_size = 0; // { // ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features // ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32); // } // struct ggml_init_params params { // /*.mem_size =*/ ctx_size, // /*.mem_buffer =*/ NULL, // /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API // }; // // Python reference code for full unpad: // /* // base_image_feature = image_feature[0] // image_feature = image_feature[1:] // image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() // image_feature = image_feature.flatten(1, 2).flatten(2, 3) // image_feature = unpad_image(image_feature, image_sizes[image_idx]) // image_feature = torch.cat(( // image_feature, // self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1) // ), dim=-1) // image_feature = image_feature.flatten(1, 2).transpose(0, 1) // image_feature = torch.cat((base_image_feature, image_feature), dim=0) // */ // // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval. // // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet. // // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them. // // Once all images are processed to prepended the base_image_features without any changes. // // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling)) // /* // image_feature = image_feature.view(2, 2, 24, 24, 4096) // image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() // image_feature = image_feature.view(2, 24, 2, 24, 4096) // image_feature = image_feature.flatten(0, 3) // // Reshape to 4D tensor by merging the last two dimensions // image_feature = image_feature.view(2, 2, 24, 24*4096) // image_feature = image_feature.permute(0, 2, 1, 3).contiguous() // image_feature = image_feature.view(-1, 4096) // */ // model.ctx = ggml_init(params); // ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip); // model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]); // if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) { // if (newline_tmp->buffer == NULL) { // LOG_TEE("newline_tmp tensor buffer is NULL\n"); // } // ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp)); // } else { // model.newline->data = newline_tmp->data; // if (model.newline->data == NULL) { // LOG_TEE("newline_tmp tensor data is NULL\n"); // } // } // struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4 // // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false); // // fill it with the image embeddings, ignoring the base // for (size_t i = 1; i < num_images; i++) { // size_t offset = (i-1) * clip_embd_nbytes(ctx_clip); // memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip)); // } // struct ggml_cgraph * gf = ggml_new_graph(model.ctx); // size_t size_ele = ggml_type_size(GGML_TYPE_F32); // struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features, // num_patches_per_side * clip_n_mmproj_embd(ctx_clip), // num_patches_per_side, // num_patches_width, // num_patches_height, // size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip), // size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side, // size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0); // // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false); // struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3)); // /** // At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings // image_feature = torch.cat(( // image_feature, // self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) // ), dim=-1) // * // */ // // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false); // struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0); // // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false); // ggml_build_forward_expand(gf, flatten); // ggml_graph_compute_with_ctx(model.ctx, gf, 1); // struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1]; // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context // // append without newline tokens (default behavior in llava_arch when not using unpad ): // memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches // *n_img_pos_out = static_cast(result->ne[1]+clip_n_patches(ctx_clip)); // // Debug: Test single segments // // Current findings: sending base image, sending a segment embedding all works similar to python // // However, permuted embeddings do not work yet (stride issue?) // // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context // // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context // // *n_img_pos_out=576; // ggml_free(model.ctx); // return true; // } static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { // std::vector img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 clip_image_f32_batch img_res_v; img_res_v.size = 0; img_res_v.data = nullptr; std::pair load_image_size; load_image_size.first = img->nx; load_image_size.second = img->ny; const int64_t t_img_enc_start_us_ip = ggml_time_us(); if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) { LOG_TEE("%s: unable to preprocess image\n", __func__); delete[] img_res_v.data; return false; } const int64_t t_img_enc_end_us_ip = ggml_time_us(); float t_img_enc_ms_ip = (t_img_enc_end_us_ip - t_img_enc_start_us_ip) / 1000.0; LOG_TEE("\n%s: image encoded in %8.2f ms by clip_image_preprocess.\n", __func__, t_img_enc_ms_ip); const int64_t t_img_enc_start_us = ggml_time_us(); const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type); if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { // flat / default llava-1.5 type embedding *n_img_pos = clip_n_patches(ctx_clip); bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd, load_image_size); // image_embd shape is 576 x 4096 delete[] img_res_v.data; if (!encoded) { LOG_TEE("Unable to encode image\n"); return false; } } // else { // // spatial_unpad llava-1.6 type embedding // // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working // std::vector image_embd_v; // image_embd_v.resize(img_res_v.size); // for (size_t i = 0; i < img_res_v.size; i++) { // image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184 // const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i], load_image_size); // image data is in 3x336x336 format and will be converted to 336x336x3 inside // if (!encoded) { // LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); // return false; // } // } // const int64_t t_img_enc_batch_us = ggml_time_us(); // LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); // const int32_t * image_grid = clip_image_grid(ctx_clip); // std::vector> grid_pinpoints; // for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) { // grid_pinpoints.push_back({image_grid[i], image_grid[i+1]}); // } // // free all img_res_v - not needed anymore // delete[] img_res_v.data; // img_res_v.size = 0; // img_res_v.data = nullptr; // const int32_t image_size = clip_image_size(ctx_clip); // struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size); // int n_img_pos_out; // clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out); // *n_img_pos = n_img_pos_out; // for (size_t i = 0; i < image_embd_v.size(); i++) { // free(image_embd_v[i]); // } // image_embd_v.clear(); // // debug image/segment/normalization content: // // clip_image_u8 * tmp = clip_image_u8_init(); // // clip_image_convert_f32_to_u8(*image_feature, *tmp); // // clip_image_save_to_bmp(*tmp, "image_feature.bmp"); // } LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); const int64_t t_img_enc_end_us = ggml_time_us(); float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); return true; } bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) { // make sure that the correct mmproj was used, i.e., compare apples to apples int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama)); auto n_image_embd = clip_n_mmproj_embd(ctx_clip); if (n_image_embd != n_llama_embd) { LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); return false; } return true; } bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model if (!image_embd) { LOG_TEE("Unable to allocate memory for image embeddings\n"); return false; } int n_img_pos; if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { LOG_TEE("%s: cannot encode image, aborting\n", __func__); free(image_embd); return false; } *image_embd_out = image_embd; *n_img_pos_out = n_img_pos; return true; } bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) { int n_embd = llama_n_embd(llama_get_model(ctx_llama)); for (int i = 0; i < image_embed->n_image_pos; i += n_batch) { int n_eval = image_embed->n_image_pos - i; if (n_eval > n_batch) { n_eval = n_batch; } llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, }; if (llama_decode(ctx_llama, batch)) { LOG_TEE("%s : failed to eval\n", __func__); return false; } *n_past += n_eval; } return true; } int ensure_divide(int length, int patch_size) { return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); } std::pair find_best_resize(std::pair original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.first; int height = original_size.second; if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { float r = static_cast(width) / height; height = static_cast(scale_resolution / std::sqrt(r)); width = static_cast(height * r); } int best_width = ensure_divide(width, patch_size); int best_height = ensure_divide(height, patch_size); return std::make_pair(best_width, best_height); } inline float clip(float x, float lower, float upper) { return std::max(lower, std::min(x, upper)); } std::pair get_refine_size(std::pair original_size, std::pair grid, int scale_resolution, int patch_size, bool allow_upscale = false) { int width, height; std::tie(width, height) = original_size; int grid_x, grid_y; std::tie(grid_x, grid_y) = grid; int refine_width = ensure_divide(width, grid_x); int refine_height = ensure_divide(height, grid_y); int grid_width = refine_width / grid_x; int grid_height = refine_height / grid_y; // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) auto best_grid_size = find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair int best_grid_width, best_grid_height; std::tie(best_grid_width, best_grid_height) = best_grid_size; // std::pair refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) std::pair refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) return refine_size; } static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { const int nx = img.nx; const int ny = img.ny; dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float Cc; float C[5]; float d0, d2, d3, a0, a1, a2, a3; int i, j, k, jj; int x, y; float dx, dy; float tx, ty; tx = (float)nx / (float)target_width; ty = (float)ny / (float)target_height; // Bicubic interpolation; adapted from ViT.cpp, inspired from : // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 // -> https://en.wikipedia.org/wiki/Bicubic_interpolation for (i = 0; i < target_height; i++) { for (j = 0; j < target_width; j++) { x = (int)(tx * j); y = (int)(ty * i); dx = tx * j - x; dy = ty * i - y; for (k = 0; k < 3; k++) { for (jj = 0; jj <= 3; jj++) { d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; d0 = C[0] - C[1]; d2 = C[2] - C[1]; d3 = C[3] - C[1]; a0 = C[1]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); } } } } return true; } std::vector> slice_image(const clip_image_u8 * img, const int max_slice_nums, const int scale_resolution, const int patch_size, const bool never_split) { const std::pair original_size={img->nx,img->ny}; const int original_width = img->nx; const int original_height = img->ny; const float log_ratio = log(1.0*original_width/original_height); // const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); const int multiple = fmin(ceil(ratio), max_slice_nums); std::vector> images; LOG_TEE("%s: multiple %d\n", __func__, multiple); images.push_back(std::vector()); if(multiple <= 1){ // auto best_resolution = select_best_resolution(image_size, grid_pinpoints); // clip_image_u8 *image_original_resize = clip_image_u8_init(); // bicubic_resize(*img, *image_original_resize, best_resolution.first, best_resolution.second); auto best_size = find_best_resize(original_size, scale_resolution, patch_size, true); clip_image_u8 *source_image = clip_image_u8_init(); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.resize(best_size, Image.Resampling.BICUBIC) images[images.size()-1].push_back(source_image); } else if(multiple > 1){ std::vector candidate_split_grids_nums; for (int i : {multiple - 1, multiple, multiple + 1}) { if (i == 1 || i > max_slice_nums) { continue; } candidate_split_grids_nums.push_back(i); } auto best_size = find_best_resize(original_size, scale_resolution, patch_size); clip_image_u8 *source_image = clip_image_u8_init(); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) images[images.size()-1].push_back(source_image); std::vector> candidate_grids; for (int split_grids_nums : candidate_split_grids_nums) { int m = 1; while (m <= split_grids_nums) { if (split_grids_nums % m == 0) { candidate_grids.emplace_back(m, split_grids_nums / m); } ++m; } } std::pair best_grid{1, 1}; float min_error = std::numeric_limits::infinity(); for (const auto& grid : candidate_grids) { float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); if (error < min_error) { best_grid = grid; min_error = error; } } LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); auto refine_size = get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); clip_image_u8 *refine_image = clip_image_u8_init(); bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); LOG_TEE("%s: refine_image_size: %d %d; best_grid: %d %d\n", __func__, refine_image->nx, refine_image->ny, best_grid.first, best_grid.second); // split_to_patches int width = refine_image->nx; int height = refine_image->ny; int grid_x = int(width / best_grid.first); int grid_y = int(height / best_grid.second); for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ images.push_back(std::vector()); for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ clip_image_u8 * patch = clip_image_u8_init(); patch->nx = grid_x; patch->ny = grid_y; patch->buf.resize(3 * patch->nx * patch->ny); for (int y = patches_i; y < patches_i + grid_y; ++y) { for (int x = patches_j; x < patches_j + grid_x; ++x) { const int i = 3 * (y * refine_image->nx + x); const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); patch->buf[j] = refine_image->buf[i]; patch->buf[j+1] = refine_image->buf[i+1]; patch->buf[j+2] = refine_image->buf[i+2]; } } images[images.size()-1].push_back(patch); } } } return images; } std::vector> llava_image_embed_make_with_bytes_slice(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) { clip_image_u8 * img = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { clip_image_u8_free(img); LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__); return std::vector>(); } std::vector> imgs = slice_image(img); for (size_t i = 0; i < imgs.size(); ++i){ for (size_t j = 0; j < imgs[i].size(); ++j) { LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); } } std::vector> results; for (size_t i = 0; i < imgs.size(); ++i){ results.push_back(std::vector()); for (size_t j = 0; j < imgs[i].size(); ++j) { float* image_embed = NULL; int n_image_pos = 0; bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos); if (!image_embed_result) { clip_image_u8_free(img); LOG_TEE("%s: coulnd't embed the image\n", __func__); return std::vector>(); } auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); result->embed = image_embed; result->n_image_pos = n_image_pos; results[i].push_back(result); } } clip_image_u8_free(img); return results; } static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { auto file = fopen(path, "rb"); if (file == NULL) { LOG_TEE("%s: can't read file %s\n", __func__, path); return false; } fseek(file, 0, SEEK_END); auto fileSize = ftell(file); fseek(file, 0, SEEK_SET); auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data if (buffer == NULL) { LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); perror("Memory allocation error"); fclose(file); return false; } errno = 0; size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer if (ferror(file)) { die_fmt("read error: %s", strerror(errno)); } if (ret != (size_t) fileSize) { die("unexpectedly reached end of file"); } fclose(file); // Close the file *bytesOut = buffer; *sizeOut = fileSize; return true; } std::vector> llava_image_embed_make_with_filename_slice(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { unsigned char* image_bytes; long image_bytes_length; auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); if (!loaded) { LOG_TEE("%s: failed to load %s\n", __func__, image_path); return std::vector>(); } std::vector> embeds = llava_image_embed_make_with_bytes_slice(ctx_clip, n_threads, image_bytes, image_bytes_length); free(image_bytes); return embeds; } void llava_image_embed_free_slice(std::vector> embed) { for (size_t i = 0; i < embed.size(); ++i){ for (size_t j = 0; j < embed[i].size(); ++j){ free(embed[i][j]->embed); free(embed[i][j]); } embed[i] = std::vector(); } embed = std::vector>(); }