#include "llama-sampling.h" #include "llama-vocab.h" #include "llama-grammar.h" #include #include #include #include #include #include #include #include static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng, std::vector & probs) { probs.resize(cur_p->size); for (size_t i = 0; i < cur_p->size; ++i) { probs[i] = cur_p->data[i].p; } std::discrete_distribution dist(probs.begin(), probs.end()); return dist(rng); } static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { GGML_ASSERT(cur_p->size > 0); // Sort the logits in descending order if (!cur_p->sorted) { std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); cur_p->sorted = true; } float max_l = cur_p->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float p = expf(cur_p->data[i].logit - max_l); cur_p->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= cum_sum; } } static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast // if (k >= (int32_t)cur_p->size) { // return; // } if (k <= 0) { k = cur_p->size; } k = std::min(k, (int) cur_p->size); // Sort scores in descending order if (!cur_p->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k <= 128) { std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp); } else { constexpr int nbuckets = 128; constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); constexpr float bucket_inter = -bucket_low * bucket_scale; std::vector bucket_idx(cur_p->size); std::vector histo(nbuckets, 0); for (int i = 0; i < (int)cur_p->size; ++i) { const float val = cur_p->data[i].logit; int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets-1, ib)); bucket_idx[i] = ib; ++histo[ib]; } int nhave = 0; int ib = nbuckets - 1; for ( ; ib >= 0; --ib) { nhave += histo[ib]; if (nhave >= k) { break; } } std::vector tmp_tokens(nhave); auto * ptr = tmp_tokens.data(); std::vector bucket_ptrs; bucket_ptrs.reserve(nbuckets - ib); for (int j = nbuckets - 1; j >= ib; --j) { bucket_ptrs.push_back(ptr); ptr += histo[j]; } for (int i = 0; i < (int)cur_p->size; ++i) { int j = bucket_idx[i]; if (j >= ib) { *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i]; } } ptr = tmp_tokens.data(); int ndone = 0; for (int j = nbuckets-1; j > ib; --j) { std::sort(ptr, ptr + histo[j], comp); ptr += histo[j]; ndone += histo[j]; } std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data)); } cur_p->sorted = true; } cur_p->size = k; } static void llama_sampler_top_p_impl(llama_token_data_array * cur_p, float p, size_t min_keep) { if (p >= 1.0f) { return; } llama_sampler_softmax_impl(cur_p); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = cur_p->size; for (size_t i = 0; i < cur_p->size; ++i) { cum_sum += cur_p->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= p && i + 1 >= min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens cur_p->size = last_idx; } static void llama_sampler_min_p_impl(llama_token_data_array * cur_p, float p, size_t min_keep) { if (p <= 0.0f || !cur_p->size) { return; } bool min_p_applied = false; // if the cur_p aren't sorted, try the unsorted implementation first if (!cur_p->sorted) { std::vector filtered_tokens; float max_logit = -FLT_MAX; for (size_t i = 0; i < cur_p->size; ++i) { max_logit = std::max(max_logit, cur_p->data[i].logit); } const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].logit >= min_logit) { filtered_tokens.push_back(cur_p->data[i]); } } // if we have enough values the operation was a success if (filtered_tokens.size() >= min_keep) { memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); cur_p->size = filtered_tokens.size(); min_p_applied = true; } } // if the cur_p are sorted or the unsorted implementation failed, use this implementation if (!min_p_applied) { // Sort the logits in descending order if (!cur_p->sorted) { std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); cur_p->sorted = true; } const float min_logit = cur_p->data[0].logit + logf(p); // min logit for p_i >= p * p_max size_t i = 1; // first token always matches for (; i < cur_p->size; ++i) { if (cur_p->data[i].logit < min_logit && i >= min_keep) { break; // prob too small } } // Resize the output vector to keep only the matching tokens cur_p->size = i; } } static void llama_sampler_tail_free_impl(llama_token_data_array * cur_p, float z, size_t min_keep) { if (z >= 1.0f || cur_p->size <= 2) { return; } llama_sampler_softmax_impl(cur_p); // Compute the first and second derivatives std::vector first_derivatives(cur_p->size - 1); std::vector second_derivatives(cur_p->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = cur_p->data[i].p - cur_p->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = std::abs(second_derivatives[i]); } // Normalize the second derivatives { const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); if (second_derivatives_sum > 1e-6f) { for (float & value : second_derivatives) { value /= second_derivatives_sum; } } else { for (float & value : second_derivatives) { value = 1.0f / second_derivatives.size(); } } } float cum_sum = 0.0f; size_t last_idx = cur_p->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location cur_p->size = last_idx; } static void llama_sampler_typical_impl(llama_token_data_array * cur_p, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sampler_softmax_impl(cur_p); float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { entropy += -cur_p->data[i].p * logf(cur_p->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < cur_p->size; ++i) { float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(cur_p->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += cur_p->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector cur_p_new; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; cur_p_new.push_back(cur_p->data[idx]); } // Replace the data in cur_p with the cur_p_new data std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data); cur_p->size = cur_p_new.size(); cur_p->sorted = false; } static void llama_sampler_entropy_impl(llama_token_data_array * cur_p, float min_temp, float max_temp, float exponent_val) { // no need to do anything if there is only one (or zero) candidates if (cur_p->size <= 1) { return; } // Calculate maximum possible entropy float max_entropy = -logf(1.0f / cur_p->size); llama_sampler_softmax_impl(cur_p); // Calculate entropy of the softmax probabilities float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float prob = cur_p->data[i].p; if (prob > 0.0f) { // Ensure no log(0) entropy -= prob * logf(prob); } } // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above) float normalized_entropy = entropy / max_entropy; // Map the normalized entropy to the desired temperature range using the power function float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); #ifdef DEBUG LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); LLAMA_LOG_INFO("Entropy: %f\n", entropy); LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); #endif // Apply the dynamically calculated temperature scaling for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].logit /= dyn_temp; } // Re-compute softmax probabilities after scaling logits with dynamic temperature const double max_l_double = cur_p->data[0].logit; double cum_sum_double = 0.0; for (size_t i = 0; i < cur_p->size; ++i) { double p = exp(cur_p->data[i].logit - max_l_double); cur_p->data[i].p = p; // Store the scaled probability cum_sum_double += p; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities } #ifdef DEBUG // Print the updated top 25 probabilities after temperature scaling LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); for (size_t i = 0; i < 25 && i < cur_p->size; ++i) { LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f); } #endif } static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) { for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].logit /= temp; } } static void llama_sampler_grammar_impl(llama_token_data_array * cur_p, const struct llama_grammar & grammar) { llama_grammar_apply_impl(grammar, cur_p); } void llama_sampler_penalties_impl( llama_token_data_array * cur_p, const llama_token_cnt & token_count, float penalty_repeat, float penalty_freq, float penalty_present) { // Apply frequency and presence penalties to the cur_p for (size_t i = 0; i < cur_p->size; ++i) { const auto token_iter = token_count.find(cur_p->data[i].id); if (token_iter == token_count.end()) { continue; } const int count = token_iter->second; // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (cur_p->data[i].logit <= 0) { cur_p->data[i].logit *= penalty_repeat; } else { cur_p->data[i].logit /= penalty_repeat; } cur_p->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; } cur_p->sorted = false; } // llama_sampler API const char * llama_sampler_name(const struct llama_sampler * smpl) { if (!smpl->iface) { return "(null)"; } return smpl->iface->name(smpl); } void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) { if (smpl->iface->accept) { smpl->iface->accept(smpl, token); } } void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) { GGML_ASSERT(smpl->iface->apply); smpl->iface->apply(smpl, cur_p); } void llama_sampler_reset(struct llama_sampler * smpl) { if (smpl->iface->reset) { smpl->iface->reset(smpl); } } struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) { if (smpl->iface->clone) { return smpl->iface->clone(smpl); } if (smpl->ctx == nullptr) { return new llama_sampler { /* .iface = */ smpl->iface, /* .ctx = */ nullptr, }; } GGML_ABORT("the sampler does not support cloning"); } void llama_sampler_free(struct llama_sampler * smpl) { if (smpl == nullptr) { return; } if (smpl->iface->free) { smpl->iface->free(smpl); } delete smpl; } llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { const auto * logits = llama_get_logits_ith(ctx, idx); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); // TODO: do not allocate each time std::vector cur(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; } llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; llama_sampler_apply(smpl, &cur_p); return cur_p.data[cur_p.selected].id; } // sampler chain static struct llama_sampler_i llama_sampler_chain_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "chain"; }, /* .accept = */ [](struct llama_sampler * smpl, llama_token token) { auto * chain = (llama_sampler_chain *) smpl->ctx; time_meas tm(chain->t_sample_us, chain->params.no_perf); for (auto * smpl : chain->samplers) { llama_sampler_accept(smpl, token); } chain->n_sample++; }, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * chain = (llama_sampler_chain *) smpl->ctx; time_meas tm(chain->t_sample_us, chain->params.no_perf); for (auto * smpl : chain->samplers) { llama_sampler_apply(smpl, cur_p); } }, /* .reset = */ [](struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto * smpl : chain->samplers) { llama_sampler_reset(smpl); } chain->t_sample_us = 0; chain->n_sample = 0; }, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * chain_src = (const llama_sampler_chain *) smpl->ctx; auto * result = llama_sampler_chain_init(chain_src->params); for (auto * smpl : chain_src->samplers) { llama_sampler_chain_add(result, llama_sampler_clone(smpl)); } return result; }, /* .free = */ [](struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto * smpl : chain->samplers) { llama_sampler_free(smpl); } delete chain; }, }; struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) { return new llama_sampler { /* .iface = */ &llama_sampler_chain_i, /* .ctx = */ new llama_sampler_chain { /* .params = */ params, /* .samplers = */ {}, /* .t_sample_us = */ 0, /* .n_sample = */ 0, }, }; } void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { auto * p = (llama_sampler_chain *) chain->ctx; p->samplers.push_back(smpl); } struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) { const auto * p = (const llama_sampler_chain *) chain->ctx; if (i < 0 || i >= (int32_t) p->samplers.size()) { return nullptr; } return p->samplers[i]; } int llama_sampler_chain_n(const struct llama_sampler * chain) { const auto * p = (const llama_sampler_chain *) chain->ctx; return p->samplers.size(); } // // samplers // // greedy static struct llama_sampler_i llama_sampler_greedy_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "greedy"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { cur_p->selected = 0; for (size_t i = 1; i < cur_p->size; ++i) { if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) { cur_p->selected = i; } } }, /* .reset = */ nullptr, /* .clone = */ nullptr, /* .free = */ nullptr, }; struct llama_sampler * llama_sampler_init_greedy() { return new llama_sampler { /* .iface = */ &llama_sampler_greedy_i, /* .ctx = */ nullptr, }; } // dist struct llama_sampler_dist { const uint32_t seed; std::mt19937 rng; std::vector probs; // work array }; static struct llama_sampler_i llama_sampler_dist_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "dist"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_dist *) smpl->ctx; cur_p->selected = llama_sample_dist(cur_p, ctx->rng, ctx->probs); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_dist *) smpl->ctx; auto * result = llama_sampler_init_dist(ctx->seed); // copy the state { auto * result_ctx = (llama_sampler_dist *) result->ctx; result_ctx->rng = ctx->rng; } return result; }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_dist *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { return new llama_sampler { /* .iface = */ &llama_sampler_dist_i, /* .ctx = */ new llama_sampler_dist { /* .seed = */ seed, /* .rng = */ std::mt19937(seed), /* .probs = */ {}, }, }; } // softmax static struct llama_sampler_i llama_sampler_softmax_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "softmax"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { llama_sampler_softmax_impl(cur_p); }, /* .reset = */ nullptr, /* .clone = */ nullptr, /* .free = */ nullptr, }; struct llama_sampler * llama_sampler_init_softmax() { return new llama_sampler { /* .iface = */ &llama_sampler_softmax_i, /* .ctx = */ nullptr, }; } // top-k struct llama_sampler_top_k { const int32_t k; }; static struct llama_sampler_i llama_sampler_top_k_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "top-k"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_top_k *) smpl->ctx; llama_sampler_top_k_impl(cur_p, ctx->k); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_k *) smpl->ctx; return llama_sampler_init_top_k(ctx->k); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_top_k *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_top_k(int32_t k) { return new llama_sampler { /* .iface = */ &llama_sampler_top_k_i, /* .ctx = */ new llama_sampler_top_k { /* .k = */ k, }, }; } // top-p struct llama_sampler_top_p { const float p; const size_t min_keep; }; static struct llama_sampler_i llama_sampler_top_p_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "top-p"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_top_p *) smpl->ctx; llama_sampler_top_p_impl(cur_p, ctx->p, ctx->min_keep); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_p *) smpl->ctx; return llama_sampler_init_top_p(ctx->p, ctx->min_keep); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_top_p *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_top_p_i, /* .ctx = */ new llama_sampler_top_p { /* .p = */ p, /* .min_keep = */ min_keep, }, }; } // min-p struct llama_sampler_min_p { const float p; const size_t min_keep; }; static struct llama_sampler_i llama_sampler_min_p_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "min-p"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_min_p *) smpl->ctx; llama_sampler_min_p_impl(cur_p, ctx->p, ctx->min_keep); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_min_p *) smpl->ctx; return llama_sampler_init_min_p(ctx->p, ctx->min_keep); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_min_p *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_min_p_i, /* .ctx = */ new llama_sampler_min_p { /* .p = */ p, /* .min_keep = */ min_keep, }, }; } // tail-free struct llama_sampler_tail_free { const float z; const size_t min_keep; }; static struct llama_sampler_i llama_sampler_tail_free_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "tail-free"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_tail_free *) smpl->ctx; llama_sampler_tail_free_impl(cur_p, ctx->z, ctx->min_keep); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_tail_free *) smpl->ctx; return llama_sampler_init_tail_free(ctx->z, ctx->min_keep); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_tail_free *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_tail_free(float z, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_tail_free_i, /* .ctx = */ new llama_sampler_tail_free { /* .z = */ z, /*. min_keep = */ min_keep, }, }; } // typical struct llama_sampler_typical { const float p; const size_t min_keep; }; static struct llama_sampler_i llama_sampler_typical_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "typical"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_typical *) smpl->ctx; llama_sampler_typical_impl(cur_p, ctx->p, ctx->min_keep); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_typical *) smpl->ctx; return llama_sampler_init_typical(ctx->p, ctx->min_keep); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_typical *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_typical_i, /* .ctx = */ new llama_sampler_typical { /* .p = */ p, /* .min_keep = */ min_keep, }, }; } // temp struct llama_sampler_temp { const float temp; }; static struct llama_sampler_i llama_sampler_temp_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "temp"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_temp *) smpl->ctx; llama_sampler_temp_impl(cur_p, ctx->temp); }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_temp *) smpl->ctx; return llama_sampler_init_temp(ctx->temp); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_temp *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_temp(float temp) { return new llama_sampler { /* .iface = */ &llama_sampler_temp_i, /* .ctx = */ new llama_sampler_temp { /*.temp = */ temp, }, }; } // temp-ext struct llama_sampler_temp_ext { const float temp; const float delta; const float exponent; }; static struct llama_sampler_i llama_sampler_temp_ext_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "temp-ext"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; if (ctx->delta > 0) { const float temp_min = std::max(0.0f, ctx->temp - ctx->delta); const float temp_max = ctx->temp + ctx->delta; llama_sampler_entropy_impl(cur_p, temp_min, temp_max, ctx->exponent); } else { llama_sampler_temp_impl(cur_p, ctx->temp); } }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx; return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_temp_ext *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) { return new llama_sampler { /* .iface = */ &llama_sampler_temp_ext_i, /* .ctx = */ new llama_sampler_temp_ext { /* .temp = */ temp, /* .delta = */ delta, /* .exponent = */ exponent, }, }; } // mirostat struct llama_sampler_mirostat { const int32_t n_vocab; const uint32_t seed; const float tau; const float eta; const int32_t m; float mu; std::mt19937 rng; std::vector probs; }; static struct llama_sampler_i llama_sampler_mirostat_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "mirostat"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; llama_sampler_softmax_impl(cur_p); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); llama_sampler_softmax_impl(cur_p); const int idx = llama_sample_dist(cur_p, ctx->rng, ctx->probs); cur_p->selected = idx; float observed_surprise = -log2f(cur_p->data[idx].p); float e = observed_surprise - ctx->tau; // Update mu using the learning rate and error ctx->mu = ctx->mu - ctx->eta * e; }, /* .reset = */ [](struct llama_sampler * smpl) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; ctx->mu = 2.0f*ctx->tau; ctx->rng = std::mt19937(ctx->seed); }, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx; auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m); // copy the state { auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx; result_ctx->mu = ctx->mu; result_ctx->rng = ctx->rng; } return result; }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_mirostat *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) { return new llama_sampler { /* .iface = */ &llama_sampler_mirostat_i, /* .ctx = */ new llama_sampler_mirostat { /* .n_vocab = */ n_vocab, /* .seed = */ seed, /* .tau = */ tau, /* .eta = */ eta, /* .m = */ m, /* .mu = */ 2.0f*tau, /* .rng = */ std::mt19937(seed), /* .probs = */ {}, }, }; } // mirostat v2 struct llama_sampler_mirostat_v2 { const uint32_t seed; const float tau; const float eta; float mu; std::mt19937 rng; std::vector probs; }; static struct llama_sampler_i llama_sampler_mirostat_v2_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "mirostat-v2"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; llama_sampler_softmax_impl(cur_p); // Truncate the words with surprise values greater than mu cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > ctx->mu; })); if (cur_p->size == 0) { cur_p->size = 1; } // Normalize the probabilities of the remaining words llama_sampler_softmax_impl(cur_p); const int idx = llama_sample_dist(cur_p, ctx->rng, ctx->probs); cur_p->selected = idx; float observed_surprise = -log2f(cur_p->data[idx].p); float e = observed_surprise - ctx->tau; // Update mu using the learning rate and error ctx->mu = ctx->mu - ctx->eta * e; }, /* .reset = */ [](struct llama_sampler * smpl) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; ctx->mu = 2.0f*ctx->tau; ctx->rng = std::mt19937(ctx->seed); }, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx; auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta); // copy the state { auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx; result_ctx->mu = ctx->mu; result_ctx->rng = ctx->rng; } return result; }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_mirostat_v2 *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) { return new llama_sampler { /* .iface = */ &llama_sampler_mirostat_v2_i, /* .ctx = */ new llama_sampler_mirostat_v2 { /* .seed = */ seed, /* .tau = */ tau, /* .eta = */ eta, /* .mu = */ 2.0f*tau, /* .rng = */ std::mt19937(seed), /* .probs = */ {}, }, }; } // grammar struct llama_sampler_grammar { const struct llama_vocab * vocab; std::string grammar_str; std::string grammar_root; struct llama_grammar * grammar; }; static struct llama_sampler_i llama_sampler_grammar_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "grammar"; }, /* .accept = */ [](struct llama_sampler * smpl, llama_token token) { const auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_accept_impl(*ctx->grammar, token); } }, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_sampler_grammar_impl(cur_p, *ctx->grammar); } }, /* .reset = */ [](struct llama_sampler * smpl) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (!ctx->grammar) { return; } auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str()); llama_grammar_free_impl(ctx->grammar); ctx->grammar = grammar_new; }, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_grammar *) smpl->ctx; auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr); // copy the state { auto * result_ctx = (llama_sampler_grammar *) result->ctx; if (ctx->grammar) { result_ctx->grammar_str = ctx->grammar_str; result_ctx->grammar_root = ctx->grammar_root; result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar); } } return result; }, /* .free = */ [](struct llama_sampler * smpl) { const auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_free_impl(ctx->grammar); } delete ctx; }, }; struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) { auto * ctx = new llama_sampler_grammar; if (grammar_str != nullptr && grammar_str[0] != '\0') { *ctx = { /* .vocab = */ &vocab, /* .grammar_str = */ grammar_str, /* .grammar_root = */ grammar_root, /* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root), }; } else { *ctx = { /* .vocab = */ &vocab, /* .grammar_str = */ {}, /* .grammar_root = */ {}, /* .grammar = */ nullptr, }; } return new llama_sampler { /* .iface = */ &llama_sampler_grammar_i, /* .ctx = */ ctx, }; } // penalties struct llama_sampler_penalties { const int32_t n_vocab; const llama_token special_eos_id; const llama_token linefeed_id; const int32_t penalty_last_n; const float penalty_repeat; const float penalty_freq; const float penalty_present; const bool penalize_nl; const bool ignore_eos; ring_buffer prev; }; static struct llama_sampler_i llama_sampler_penalties_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "penalties"; }, /* .accept = */ [](struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; if (ctx->prev.size()) { ctx->prev.push_back(token); } }, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; if (ctx->ignore_eos) { assert(ctx->special_eos_id >= 0); // optimistically check if the candidates are not yet sorted/shuffled/truncated if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) { cur_p->data[ctx->special_eos_id].logit = -INFINITY; } else { // else, search for the special EOS token for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].id == ctx->special_eos_id) { cur_p->data[i].logit = -INFINITY; break; } } } } if ((ctx->penalty_last_n == 0) || (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { return; } bool nl_found = false; size_t nl_idx = 0; float nl_logit = -INFINITY; if (!ctx->penalize_nl) { assert(ctx->linefeed_id >= 0); // optimistically check if the candidates are not yet sorted/shuffled/truncated if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) { nl_found = true; nl_idx = ctx->linefeed_id; nl_logit = cur_p->data[ctx->linefeed_id].logit; } else { // else, search for the linefeed token for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].id == ctx->linefeed_id) { nl_found = true; nl_idx = i; nl_logit = cur_p->data[i].logit; break; } } } } // Create a frequency map to count occurrences of each token in last_tokens // TODO: optimize this by maintaining the token count in the sampler context llama_token_cnt token_count; for (int i = 0; i < std::min(ctx->penalty_last_n, ctx->prev.size()); ++i) { token_count[ctx->prev.rat(i)]++; } llama_sampler_penalties_impl(cur_p, token_count, ctx->penalty_repeat, ctx->penalty_freq, ctx->penalty_present); if (!ctx->penalize_nl && nl_found) { // restore the logit of the newline token if it was penalized cur_p->data[nl_idx].logit = nl_logit; } }, /* .reset = */ [](struct llama_sampler * smpl) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; ctx->prev.clear(); }, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; auto * result = llama_sampler_init_penalties( ctx->n_vocab, ctx->special_eos_id, ctx->linefeed_id, ctx->penalty_last_n, ctx->penalty_repeat, ctx->penalty_freq, ctx->penalty_present, ctx->penalize_nl, ctx->ignore_eos); // copy the state { auto * result_ctx = (llama_sampler_penalties *) result->ctx; result_ctx->prev = ctx->prev; } return result; }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_penalties *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_penalties( int32_t n_vocab, llama_token special_eos_id, llama_token linefeed_id, int32_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present, bool penalize_nl, bool ignore_eos) { if (linefeed_id == LLAMA_TOKEN_NULL) { penalize_nl = false; } if (special_eos_id == LLAMA_TOKEN_NULL) { ignore_eos = true; } return new llama_sampler { /* .iface = */ &llama_sampler_penalties_i, /* .ctx = */ new llama_sampler_penalties { /* .n_vocab = */ n_vocab, /* .special_eos_id = */ special_eos_id, /* .linefeed_id = */ linefeed_id, /* .penalty_last_n = */ penalty_last_n, /* .penalty_repeat = */ penalty_repeat, /* .penalty_freq = */ penalty_freq, /* .penalty_present = */ penalty_present, /* .penalize_nl = */ penalize_nl, /* .ignore_eos = */ ignore_eos, /* .prev = */ ring_buffer(penalty_last_n), }, }; } // logit-bias struct llama_sampler_logit_bias { const int32_t n_vocab; const std::vector logit_bias; std::vector to_search; }; static struct llama_sampler_i llama_sampler_logit_bias_i = { /* .name = */ [](const struct llama_sampler * /*smpl*/) { return "logit-bias"; }, /* .accept = */ nullptr, /* .apply = */ [](struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; ctx->to_search.clear(); // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id) for (const auto & lb : ctx->logit_bias) { if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) { cur_p->data[lb.token].logit += lb.bias; } else { ctx->to_search.push_back(lb); } } // search for the remaining candidates that were not found in the previous step for (size_t i = 0; i < cur_p->size; ++i) { for (const auto & lb : ctx->to_search) { if (cur_p->data[i].id == lb.token) { cur_p->data[i].logit += lb.bias; break; } } } }, /* .reset = */ nullptr, /* .clone = */ [](const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx; return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data()); }, /* .free = */ [](struct llama_sampler * smpl) { delete (llama_sampler_logit_bias *) smpl->ctx; }, }; struct llama_sampler * llama_sampler_init_logit_bias( int32_t n_vocab, int32_t n_logit_bias, const llama_logit_bias * logit_bias) { return new llama_sampler { /* .iface = */ &llama_sampler_logit_bias_i, /* .ctx = */ new llama_sampler_logit_bias { /* .n_vocab = */ n_vocab, /* .logit_bias = */ std::vector(logit_bias, logit_bias + n_logit_bias), /* .to_search = */ {}, }, }; }