#include "common.cuh" #include "vecdotq.cuh" #include #include typedef void (*load_tiles_mmq_t)( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride); typedef void (*vec_dot_mmq_t)( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, float * __restrict__ sum, const int & k0); struct tile_x_sizes { int ql; int dm; int qh; int sc; }; // get_mmq_x_max_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row static constexpr __device__ int get_mmq_x_max_device() { #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) return 64; #else #if __CUDA_ARCH__ >= CC_VOLTA #ifdef CUDA_USE_TENSOR_CORES return MMQ_MAX_BATCH_SIZE; #else return 128; #endif // CUDA_USE_TENSOR_CORES #else return 64; #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } // get_mmq_y_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) static constexpr __device__ int get_mmq_y_device(int mmq_x) { return mmq_x >= 32 ? 128 : 64; } #else #if __CUDA_ARCH__ >= CC_VOLTA static constexpr __device__ int get_mmq_y_device(int mmq_x) { return mmq_x >= 32 ? 128 : 64; } #else static constexpr __device__ int get_mmq_y_device(int /*mmq_x*/) { return 64; } #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #define TILE_X_SIZES_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0, 0} #define TILE_X_SIZES_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0, 0} #define TILE_X_SIZES_Q5_0 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_0 + mmq_y/QI5_0, 0, 0} #define TILE_X_SIZES_Q5_1 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_1 + mmq_y/QI5_1, 0, 0} #define TILE_X_SIZES_Q8_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI8_0 + mmq_y/QI8_0, 0, 0} #define TILE_X_SIZES_Q2_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI2_K + mmq_y/QI2_K, 0, mmq_y*WARP_SIZE/4 + mmq_y/4} #define TILE_X_SIZES_Q3_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI3_K + mmq_y/QI3_K, mmq_y*WARP_SIZE/2 + mmq_y/2, mmq_y*WARP_SIZE/4 + mmq_y/4} #define TILE_X_SIZES_Q4_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_K + mmq_y/QI4_K, 0, mmq_y*WARP_SIZE/8 + mmq_y/8} #define TILE_X_SIZES_Q5_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_K + mmq_y/QI5_K, 0, mmq_y*WARP_SIZE/8 + mmq_y/8} #define TILE_X_SIZES_Q6_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI6_K + mmq_y/QI6_K, 0, mmq_y*WARP_SIZE/8 + mmq_y/8} #define GET_TILE_X_SIZES_BODY \ return type == GGML_TYPE_Q4_0 ? TILE_X_SIZES_Q4_0 : \ type == GGML_TYPE_Q4_1 ? TILE_X_SIZES_Q4_1 : \ type == GGML_TYPE_Q5_0 ? TILE_X_SIZES_Q5_0 : \ type == GGML_TYPE_Q5_1 ? TILE_X_SIZES_Q5_1 : \ type == GGML_TYPE_Q8_0 ? TILE_X_SIZES_Q8_0 : \ type == GGML_TYPE_Q2_K ? TILE_X_SIZES_Q2_K : \ type == GGML_TYPE_Q3_K ? TILE_X_SIZES_Q3_K : \ type == GGML_TYPE_Q4_K ? TILE_X_SIZES_Q4_K : \ type == GGML_TYPE_Q5_K ? TILE_X_SIZES_Q5_K : \ type == GGML_TYPE_Q6_K ? TILE_X_SIZES_Q6_K : \ tile_x_sizes{0, 0, 0, 0} static tile_x_sizes get_tile_x_sizes_host(const ggml_type type, const int mmq_y) { GET_TILE_X_SIZES_BODY; } template static constexpr __device__ tile_x_sizes get_tile_x_sizes_device(ggml_type type) { GET_TILE_X_SIZES_BODY; } // ------------------------------------------------------------ template static __device__ __forceinline__ void load_tiles_q4_0( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kbx = threadIdx.x / QI4_0; const int kqsx = threadIdx.x % QI4_0; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx; x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd; x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d; } } template static __device__ __forceinline__ void vec_dot_q4_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2)); const float * x_dmf = (const float *) x_dm; int u[2*VDR_Q4_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k0], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k0/QI4_0], y_ds[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void load_tiles_q4_1( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kbx = threadIdx.x / QI4_1; const int kqsx = threadIdx.x % QI4_1; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx; x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd; x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm; } } template static __device__ __forceinline__ void vec_dot_q4_1_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2)); int u[2*VDR_Q4_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k0], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k0/QI4_1], y_ds[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void load_tiles_q5_0( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kbx = threadIdx.x / QI5_0; const int kqsx = threadIdx.x % QI5_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx; const int ql = get_int_from_uint8(bxi->qs, kqsx); const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+0] = qs0; int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd; x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d; } } template static __device__ __forceinline__ void vec_dot_q5_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k0/QI5_0; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; int u[2*VDR_Q5_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k0], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void load_tiles_q5_1( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kbx = threadIdx.x / QI5_1; const int kqsx = threadIdx.x % QI5_1; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+0] = qs0; int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd; x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm; } } template static __device__ __forceinline__ void vec_dot_q5_1_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k0/QI5_1; int u[2*VDR_Q5_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k0], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void load_tiles_q8_0( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); const int kbx = threadIdx.x / QI8_0; const int kqsx = threadIdx.x % QI8_0; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx; x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_int8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) { int i = i0 + threadIdx.y * QI8_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd; x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d; } } template static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); GGML_UNUSED(x_sc); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k0], &y_qs[j * WARP_SIZE + k0], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k0/QI8_0], y_df[j * (WARP_SIZE/QI8_1) + k0/QI8_1]); } } } template static __device__ __forceinline__ void load_tiles_q2_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); const int kbx = threadIdx.x / QI2_K; const int kqsx = threadIdx.x % QI2_K; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + kbx; x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI2_K; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) { int i = (i0 + threadIdx.y * QI2_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + kbxd; x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4); if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/4)) / (QI2_K/4); x_sc[i * (WARP_SIZE/4) + i / 4 + threadIdx.x % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, threadIdx.x % (QI2_K/4)); } } template static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kbx = k0 / QI2_K; const int ky = (k0 % QI2_K) * QR2_K; const float * y_df = (const float *) y_ds; int v[QR2_K*VDR_Q2_K_Q8_1_MMQ]; const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2); const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2)); #pragma unroll for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) { v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303; } const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4; const int index_y = j * WARP_SIZE + (QR2_K*k0) % WARP_SIZE; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq( v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]); } } } template static __device__ __forceinline__ void load_tiles_q3_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { const int kbx = threadIdx.x / QI3_K; const int kqsx = threadIdx.x % QI3_K; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + kbx; x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI3_K; const int kbxd = threadIdx.x % blocks_per_tile_x_row; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) { int i = (i0 + threadIdx.y * QI3_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + kbxd; x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) { int i = i0 + threadIdx.y * 2 + threadIdx.x / (WARP_SIZE/2); if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/2)) / (QI3_K/2); // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted x_qh[i * (WARP_SIZE/2) + i / 2 + threadIdx.x % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, threadIdx.x % (QI3_K/2)); } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4); if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/4)) / (QI3_K/4); const int ksc = threadIdx.x % (QI3_K/4); const int ksc_low = ksc % (QI3_K/8); const int shift_low = 4 * (ksc / (QI3_K/8)); const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; const int ksc_high = QI3_K/8; const int shift_high = 2 * ksc; const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; const int sc = __vsubss4(sc_low | sc_high, 0x20202020); x_sc[i * (WARP_SIZE/4) + i / 4 + threadIdx.x % (WARP_SIZE/4)] = sc; } } template static __device__ __forceinline__ void vec_dot_q3_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kbx = k0 / QI3_K; const int ky = (k0 % QI3_K) * QR3_K; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4; int v[QR3_K*VDR_Q3_K_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) { const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2); const int shift = 2 * ((ky % 32) / 8); const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303; const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8); const int vlh = (vh << 2) & 0x04040404; v[l] = __vsubss4(vll, vlh); } const int index_y = j * WARP_SIZE + (k0*QR3_K) % WARP_SIZE; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq( v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]); } } } template static __device__ __forceinline__ void load_tiles_q4_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); const int kbx = 0; // threadIdx.x / QI4_K const int kqsx = threadIdx.x; // threadIdx.x % QI4_K #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + kbx; x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) { int i = (i0 + threadIdx.y * QI4_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + kbxd; x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8); const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; } } template static __device__ __forceinline__ void vec_dot_q4_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2*((k0 % 16) / 8); const int index_y = j * WARP_SIZE + (QR4_K*k0) % WARP_SIZE; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq( &x_ql[i * (WARP_SIZE + 1) + k0], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]); } } } template static __device__ __forceinline__ void load_tiles_q5_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); const int kbx = 0; // threadIdx.x / QI5_K const int kqsx = threadIdx.x; // threadIdx.x % QI5_K #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + kbx; const int ky = QR5_K*kqsx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4)); const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010; const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010; const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0; const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + (QI5_K/4); x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0; x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) { int i = (i0 + threadIdx.y * QI5_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + kbxd; x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI5_K/8); const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; } } template static __device__ __forceinline__ void vec_dot_q5_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2 * ((k0 % 16) / 8); const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k0; const int index_y = j * WARP_SIZE + (QR5_K*k0) % WARP_SIZE; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq( &x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]); } } } template static __device__ __forceinline__ void load_tiles_q6_K( const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) { GGML_UNUSED(x_qh); const int kbx = 0; // threadIdx.x / QI6_K const int kqsx = threadIdx.x; // threadIdx.x % QI6_K #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbx; const int ky = QR6_K*kqsx; const int ql = get_int_from_uint8(bxi->ql, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)); const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030; const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030; const int kq0 = ky - ky % QI6_K + threadIdx.x % (QI6_K/2) + 0; const int kq1 = ky - ky % QI6_K + threadIdx.x % (QI6_K/2) + (QI6_K/2); x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020); x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020); } const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd; x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4; x_sc[i * (WARP_SIZE/8) + i / 8 + threadIdx.x % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, threadIdx.x % (QI6_K/8)); } } template static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mul_mat( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) { GGML_UNUSED(x_qh); #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/8]); const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k0; const int index_y = j * WARP_SIZE + (QR6_K*k0) % WARP_SIZE; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq( &x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]); } } } // ------------------------------------------------------------------------------------------------------------------------------------- template struct mmq_type_traits; template struct mmq_type_traits { static constexpr bool need_sum = true; static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_0_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = true; static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_1_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = false; static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_0_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = true; static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_1_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = false; static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q8_0_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = false; static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q2_K_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = false; static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q3_K_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = true; static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_K_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = true; static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_K_q8_1_mul_mat; }; template struct mmq_type_traits { static constexpr bool need_sum = false; static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K; static constexpr vec_dot_mmq_t vec_dot = vec_dot_q6_K_q8_1_mul_mat; }; template #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #else #if __CUDA_ARCH__ >= CC_VOLTA __launch_bounds__(WARP_SIZE*nwarps, 1) #else __launch_bounds__(WARP_SIZE*nwarps, type == GGML_TYPE_Q2_K ? 1 : 2) #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) static __global__ void mul_mat_q( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, const int ne00, const int ne01, const int stride00, const int ne10, const int ne11, const int ne0) { // Skip unused template specializations for faster compilation: if (mmq_x > get_mmq_x_max_device()) { NO_DEVICE_CODE; return; } constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qr = ggml_cuda_type_traits::qr; constexpr int qi = ggml_cuda_type_traits::qi; constexpr int mmq_y = get_mmq_y_device(mmq_x); constexpr bool need_sum = mmq_type_traits::need_sum; constexpr int vdr = mmq_type_traits::vdr; constexpr load_tiles_mmq_t load_tiles = mmq_type_traits::load_tiles; constexpr vec_dot_mmq_t vec_dot = mmq_type_traits::vec_dot; constexpr tile_x_sizes txs = get_tile_x_sizes_device(type); extern __shared__ char data_mul_mat_q[]; int * tile_x_ql = (int *) data_mul_mat_q; half2 * tile_x_dm = (half2 *) (tile_x_ql + txs.ql); int * tile_x_qh = (int *) (tile_x_dm + txs.dm); int * tile_x_sc = (int *) (tile_x_qh + txs.qh); int * tile_y_qs = (int *) (tile_x_sc + txs.sc); // [mmq_x * WARP_SIZE] half2 * tile_y_ds = (half2 *) (tile_y_qs + mmq_x*WARP_SIZE); // [mmq_x * WARP_SIZE/QI8_1]; const block_q8_1 * y = (const block_q8_1 *) yc; const int blocks_per_row_x = ne00 / qk; const int blocks_per_col_y = ne10 / QK8_1; const int blocks_per_warp = WARP_SIZE / qi; const int & ne1 = ne11; const int tile_x_max_i = ne01 - blockIdx.x*mmq_y - 1; float sum[(mmq_x/nwarps) * (mmq_y/WARP_SIZE)] = {0.0f}; for (int kb0 = 0; kb0 < blocks_per_row_x; kb0 += blocks_per_warp) { load_tiles(x, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, stride00*blockIdx.x*mmq_y + kb0, tile_x_max_i, stride00); #pragma unroll for (int kr = 0; kr < qr; ++kr) { const int kqs = kr*WARP_SIZE + threadIdx.x; const int kbxd = kqs / QI8_1; #pragma unroll for (int i0 = 0; i0 < mmq_x; i0 += nwarps) { const int i = min(blockIdx.y*mmq_x + threadIdx.y + i0, ne11-1); // to prevent out-of-bounds memory accesses const block_q8_1 * by0 = &y[i*blocks_per_col_y + kb0 * (qk/QK8_1) + kbxd]; const int index_y = (i0 + threadIdx.y) * WARP_SIZE + kqs % WARP_SIZE; tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1); } #pragma unroll for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) { const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x; const int kby = threadIdx.x % (WARP_SIZE/QI8_1); const int i_y_eff = min(blockIdx.y*mmq_x + ids, ne11-1); // if the sum is not needed it's faster to transform the scale to f32 ahead of time const half2 * dsi_src = &y[i_y_eff*blocks_per_col_y + kb0 * (qk/QK8_1) + kr*(WARP_SIZE/QI8_1) + kby].ds; half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby]; if (need_sum) { *dsi_dst = *dsi_src; } else { float * dfi_dst = (float *) dsi_dst; *dfi_dst = __low2float(*dsi_src); } } __syncthreads(); // #pragma unroll // unrolling this loop causes too much register pressure for (int k0 = kr*WARP_SIZE/qr; k0 < (kr+1)*WARP_SIZE/qr; k0 += vdr) { vec_dot(tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds, sum, k0); } __syncthreads(); } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = blockIdx.y*mmq_x + j0 + threadIdx.y; if (j >= ne1) { return; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = blockIdx.x*mmq_y + i0 + threadIdx.x; if (need_check && i >= ne0) { continue; } dst[j*ne0 + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; } } } struct mmq_args { const char * x; const char * y; float * dst; int64_t ne00; int64_t ne01; int64_t stride00; int64_t ne10; int64_t ne11; int64_t ne0; }; template static void launch_mul_mat_q(const mmq_args & args, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int cc = ggml_cuda_info().devices[id].cc; const int mmq_y = get_mmq_y_host(cc, mmq_x); const int block_num_x = (args.ne01 + mmq_y - 1) / mmq_y; const int block_num_y = (args.ne11 + mmq_x - 1) / mmq_x; const dim3 block_nums(block_num_x, block_num_y, 1); const dim3 block_dims(WARP_SIZE, nwarps, 1); const tile_x_sizes txs = get_tile_x_sizes_host(type, mmq_y); const int shmem_x = txs.ql*sizeof(int) + txs.dm*sizeof(half2) + txs.qh*sizeof(int) + txs.sc*sizeof(int); const int shmem_y = mmq_x*WARP_SIZE*sizeof(int) + mmq_x*(WARP_SIZE/QI8_1)*sizeof(half2); const int shmem = shmem_x + shmem_y; #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; if (!shmem_limit_raised[id]) { CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); shmem_limit_raised[id] = true; } #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) if (args.ne01 % mmq_y == 0) { const bool need_check = false; mul_mat_q<<>> (args.x, args.y, args.dst, args.ne00, args.ne01, args.stride00, args.ne10, args.ne11, args.ne0); } else { const bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.dst, args.ne00, args.ne01, args.stride00, args.ne10, args.ne11, args.ne0); } } template void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int nsm = ggml_cuda_info().devices[id].nsm; const int cc = ggml_cuda_info().devices[id].cc; const int mmq_x_max = get_mmq_x_max_host(cc); const int mmq_y = get_mmq_y_host(cc, mmq_x_max); const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; int mmq_x_best = 0; int nwaves_best = INT_MAX; for (int mmq_x = 8; mmq_x <= mmq_x_max && nwaves_best > 1; mmq_x += 8) { const int block_num_x = (args.ne11 + mmq_x - 1) / mmq_x; const int nwaves = (block_num_x*block_num_y + nsm - 1) / nsm; if (nwaves < nwaves_best) { mmq_x_best = mmq_x; nwaves_best = nwaves; } } switch (mmq_x_best) { case 8: launch_mul_mat_q(args, stream); break; case 16: launch_mul_mat_q(args, stream); break; case 24: launch_mul_mat_q(args, stream); break; case 32: launch_mul_mat_q(args, stream); break; case 40: launch_mul_mat_q(args, stream); break; case 48: launch_mul_mat_q(args, stream); break; case 56: launch_mul_mat_q(args, stream); break; case 64: launch_mul_mat_q(args, stream); break; case 72: launch_mul_mat_q(args, stream); break; case 80: launch_mul_mat_q(args, stream); break; case 88: launch_mul_mat_q(args, stream); break; case 96: launch_mul_mat_q(args, stream); break; case 104: launch_mul_mat_q(args, stream); break; case 112: launch_mul_mat_q(args, stream); break; case 120: launch_mul_mat_q(args, stream); break; case 128: launch_mul_mat_q(args, stream); break; default: GGML_ASSERT(false); break; } } #define DECL_MMQ_CASE(type) \ template void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) \ extern DECL_MMQ_CASE(GGML_TYPE_Q4_0); extern DECL_MMQ_CASE(GGML_TYPE_Q4_1); extern DECL_MMQ_CASE(GGML_TYPE_Q5_0); extern DECL_MMQ_CASE(GGML_TYPE_Q5_1); extern DECL_MMQ_CASE(GGML_TYPE_Q8_0); extern DECL_MMQ_CASE(GGML_TYPE_Q2_K); extern DECL_MMQ_CASE(GGML_TYPE_Q3_K); extern DECL_MMQ_CASE(GGML_TYPE_Q4_K); extern DECL_MMQ_CASE(GGML_TYPE_Q5_K); extern DECL_MMQ_CASE(GGML_TYPE_Q6_K); // ------------------------------------------------------------------------------------------------------------------------- void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream); bool ggml_cuda_supports_mmq(enum ggml_type type);